Identifier
-
Mp00044:
Integer partitions
—conjugate⟶
Integer partitions
St000704: Integer partitions ⟶ ℤ
Values
[2] => [1,1] => 1
[1,1] => [2] => 1
[3] => [1,1,1] => 1
[2,1] => [2,1] => 2
[1,1,1] => [3] => 1
[4] => [1,1,1,1] => 1
[3,1] => [2,1,1] => 3
[2,2] => [2,2] => 1
[2,1,1] => [3,1] => 3
[1,1,1,1] => [4] => 1
[5] => [1,1,1,1,1] => 1
[4,1] => [2,1,1,1] => 4
[3,2] => [2,2,1] => 3
[3,1,1] => [3,1,1] => 6
[2,2,1] => [3,2] => 2
[2,1,1,1] => [4,1] => 4
[1,1,1,1,1] => [5] => 1
[6] => [1,1,1,1,1,1] => 1
[5,1] => [2,1,1,1,1] => 5
[4,2] => [2,2,1,1] => 6
[4,1,1] => [3,1,1,1] => 10
[3,3] => [2,2,2] => 1
[3,2,1] => [3,2,1] => 8
[3,1,1,1] => [4,1,1] => 10
[2,2,2] => [3,3] => 1
[2,2,1,1] => [4,2] => 3
[2,1,1,1,1] => [5,1] => 5
[1,1,1,1,1,1] => [6] => 1
[7] => [1,1,1,1,1,1,1] => 1
[6,1] => [2,1,1,1,1,1] => 6
[5,2] => [2,2,1,1,1] => 10
[5,1,1] => [3,1,1,1,1] => 15
[4,3] => [2,2,2,1] => 4
[4,2,1] => [3,2,1,1] => 20
[4,1,1,1] => [4,1,1,1] => 20
[3,3,1] => [3,2,2] => 3
[3,2,2] => [3,3,1] => 6
[3,2,1,1] => [4,2,1] => 15
[3,1,1,1,1] => [5,1,1] => 15
[2,2,2,1] => [4,3] => 2
[2,2,1,1,1] => [5,2] => 4
[2,1,1,1,1,1] => [6,1] => 6
[1,1,1,1,1,1,1] => [7] => 1
[8] => [1,1,1,1,1,1,1,1] => 1
[7,1] => [2,1,1,1,1,1,1] => 7
[6,2] => [2,2,1,1,1,1] => 15
[6,1,1] => [3,1,1,1,1,1] => 21
[5,3] => [2,2,2,1,1] => 10
[5,2,1] => [3,2,1,1,1] => 40
[5,1,1,1] => [4,1,1,1,1] => 35
[4,4] => [2,2,2,2] => 1
[4,3,1] => [3,2,2,1] => 15
[4,2,2] => [3,3,1,1] => 20
[4,2,1,1] => [4,2,1,1] => 45
[4,1,1,1,1] => [5,1,1,1] => 35
[3,3,2] => [3,3,2] => 3
[3,3,1,1] => [4,2,2] => 6
[3,2,2,1] => [4,3,1] => 15
[3,2,1,1,1] => [5,2,1] => 24
[3,1,1,1,1,1] => [6,1,1] => 21
[2,2,2,2] => [4,4] => 1
[2,2,2,1,1] => [5,3] => 3
[2,2,1,1,1,1] => [6,2] => 5
[2,1,1,1,1,1,1] => [7,1] => 7
[1,1,1,1,1,1,1,1] => [8] => 1
[9] => [1,1,1,1,1,1,1,1,1] => 1
[8,1] => [2,1,1,1,1,1,1,1] => 8
[7,2] => [2,2,1,1,1,1,1] => 21
[7,1,1] => [3,1,1,1,1,1,1] => 28
[6,3] => [2,2,2,1,1,1] => 20
[6,2,1] => [3,2,1,1,1,1] => 70
[6,1,1,1] => [4,1,1,1,1,1] => 56
[5,4] => [2,2,2,2,1] => 5
[5,3,1] => [3,2,2,1,1] => 45
[5,2,2] => [3,3,1,1,1] => 50
[5,2,1,1] => [4,2,1,1,1] => 105
[5,1,1,1,1] => [5,1,1,1,1] => 70
[4,4,1] => [3,2,2,2] => 4
[4,3,2] => [3,3,2,1] => 20
[4,3,1,1] => [4,2,2,1] => 36
[4,2,2,1] => [4,3,1,1] => 60
[4,2,1,1,1] => [5,2,1,1] => 84
[4,1,1,1,1,1] => [6,1,1,1] => 56
[3,3,3] => [3,3,3] => 1
[3,3,2,1] => [4,3,2] => 8
[3,3,1,1,1] => [5,2,2] => 10
[3,2,2,2] => [4,4,1] => 10
[3,2,2,1,1] => [5,3,1] => 27
[3,2,1,1,1,1] => [6,2,1] => 35
[3,1,1,1,1,1,1] => [7,1,1] => 28
[2,2,2,2,1] => [5,4] => 2
[2,2,2,1,1,1] => [6,3] => 4
[2,2,1,1,1,1,1] => [7,2] => 6
[2,1,1,1,1,1,1,1] => [8,1] => 8
[1,1,1,1,1,1,1,1,1] => [9] => 1
[10] => [1,1,1,1,1,1,1,1,1,1] => 1
[9,1] => [2,1,1,1,1,1,1,1,1] => 9
[8,2] => [2,2,1,1,1,1,1,1] => 28
[8,1,1] => [3,1,1,1,1,1,1,1] => 36
[7,3] => [2,2,2,1,1,1,1] => 35
[7,2,1] => [3,2,1,1,1,1,1] => 112
>>> Load all 270 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of semistandard tableaux on a given integer partition with minimal maximal entry.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
This is, for an integer partition $\lambda = (\lambda_1 > \cdots > \lambda_k > 0)$, the number of semistandard tableaux of shape $\lambda$ with maximal entry $k$.
Equivalently, this is the evaluation $s_\lambda(1,\ldots,1)$ of the Schur function $s_\lambda$ in $k$ variables, or, explicitly,
$$ \prod_{(i,j) \in L} \frac{k + j - i}{ \operatorname{hook}(i,j) }$$
where the product is over all cells $(i,j) \in L$ and $\operatorname{hook}(i,j)$ is the hook length of a cell.
See [Theorem 6.3, 1] for details.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!