Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00142: Dyck paths —promotion⟶ Dyck paths
Mp00027: Dyck paths —to partition⟶ Integer partitions
St000708: Integer partitions ⟶ ℤ
Values
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [2,1] => 2
[1,1,0,0] => [1,1,1,0,0,0] => [1,0,1,1,0,0] => [1,1] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [3,2,1] => 6
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [2,2,1] => 4
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => [3,1,1] => 3
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0] => [2,1,1] => 2
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0] => [1,1,1] => 1
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [4,3,2,1] => 24
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [3,3,2,1] => 18
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [4,2,2,1] => 16
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [3,2,2,1] => 12
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [2,2,2,1] => 8
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [4,3,1,1] => 12
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [3,3,1,1] => 9
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [4,2,1,1] => 8
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [3,2,1,1] => 6
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [2,2,1,1] => 4
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [4,1,1,1] => 4
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,0] => [3,1,1,1] => 3
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [2,1,1,1] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,1,1] => 1
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [3,3,3,2,1] => 54
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [4,3,2,2,1] => 48
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [3,3,2,2,1] => 36
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [5,2,2,2,1] => 40
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => [4,2,2,2,1] => 32
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [3,2,2,2,1] => 24
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [2,2,2,2,1] => 16
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => [4,3,3,1,1] => 36
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [3,3,3,1,1] => 27
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => [4,4,2,1,1] => 32
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [5,3,2,1,1] => 30
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,1] => 24
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [3,3,2,1,1] => 18
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [5,2,2,1,1] => 20
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [4,2,2,1,1] => 16
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [3,2,2,1,1] => 12
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [2,2,2,1,1] => 8
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [5,4,1,1,1] => 20
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [4,4,1,1,1] => 16
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [5,3,1,1,1] => 15
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,1,0,0,1,0,1,0,0] => [4,3,1,1,1] => 12
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [3,3,1,1,1] => 9
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [5,2,1,1,1] => 10
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [4,2,1,1,1] => 8
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [3,2,1,1,1] => 6
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [2,2,1,1,1] => 4
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [5,1,1,1,1] => 5
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [4,1,1,1,1] => 4
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,0] => [3,1,1,1,1] => 3
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [2,1,1,1,1] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1] => 1
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [3,2,2,2,2,1] => 48
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [2,2,2,2,2,1] => 32
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [3,3,2,2,1,1] => 36
[1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,1,0,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,1,0,0,0] => [4,2,2,2,1,1] => 32
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,0,1,0,0,0,0] => [3,2,2,2,1,1] => 24
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [2,2,2,2,1,1] => 16
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,1,0,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [3,3,3,1,1,1] => 27
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,1,1] => 24
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [3,3,2,1,1,1] => 18
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,1,0,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [5,2,2,1,1,1] => 20
[1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,1,0,0,0] => [4,2,2,1,1,1] => 16
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [3,2,2,1,1,1] => 12
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,0,1,1,1,0,1,1,1,0,0,0,0,0] => [2,2,2,1,1,1] => 8
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,1,0,0,0,1,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,1,1,0,0,0] => [4,4,1,1,1,1] => 16
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,1,0,0,1,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,1,0,0,1,0,0] => [5,3,1,1,1,1] => 15
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,1,0,1,0,0,0] => [4,3,1,1,1,1] => 12
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,0,1,1,0,0,0,0] => [3,3,1,1,1,1] => 9
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,1,1,1,0,1,0,0,0,0,1,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0,1,0] => [6,2,1,1,1,1] => 12
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,1,0,0] => [5,2,1,1,1,1] => 10
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,1,0,0,0] => [4,2,1,1,1,1] => 8
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [3,2,1,1,1,1] => 6
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,1,1,0,0,0,0,0] => [2,2,1,1,1,1] => 4
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0,1,0] => [6,1,1,1,1,1] => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,1,1,1,1] => 5
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,1,0,0,0] => [4,1,1,1,1,1] => 4
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,1,0,0,0,0] => [3,1,1,1,1,1] => 3
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [2,1,1,1,1,1] => 2
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1] => 1
[1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,0,1,1,1,1,1,0,0,0,0,0,0] => [2,2,2,2,2,1,1] => 32
[1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,1,1,1,0,1,0,0,0,0,0,0] => [1,0,1,1,1,0,1,1,1,0,1,0,0,0,0,0] => [3,2,2,2,1,1,1] => 24
[1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,0,1,1,1,1,0,0,0,0,0,0] => [2,2,2,2,1,1,1] => 16
[1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [1,1,1,1,1,0,1,0,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,1,1,0,0,0,0,0] => [3,3,2,1,1,1,1] => 18
[1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,0,1,1,0,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,1,0,0,1,0,0,0,0] => [4,2,2,1,1,1,1] => 16
[1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0] => [1,0,1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [3,2,2,1,1,1,1] => 12
[1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,1,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,0,1,1,1,0,0,0,0,0,0] => [2,2,2,1,1,1,1] => 8
[1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [1,1,1,1,1,1,0,0,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,1,0,1,0,0,0,0] => [4,3,1,1,1,1,1] => 12
[1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,1,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,1,1,0,0,0,0,0] => [3,3,1,1,1,1,1] => 9
[1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [1,1,1,1,1,1,0,1,0,0,0,1,0,0,0,0] => [1,0,1,1,1,1,1,0,1,0,0,0,1,0,0,0] => [5,2,1,1,1,1,1] => 10
[1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [1,1,1,1,1,1,0,1,0,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,1,0,0,1,0,0,0,0] => [4,2,1,1,1,1,1] => 8
[1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [3,2,1,1,1,1,1] => 6
[1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,1,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,1,1,0,0,0,0,0,0] => [2,2,1,1,1,1,1] => 4
[1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,1,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,1,0,0] => [6,1,1,1,1,1,1] => 6
[1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,1,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,1,0,0,0] => [5,1,1,1,1,1,1] => 5
[1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,0,1,0,0,0,0] => [4,1,1,1,1,1,1] => 4
[1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,1,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,0,1,0,0,0,0,0] => [3,1,1,1,1,1,1] => 3
[1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,0,1,0,0,0,0,0,0] => [2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,1,1] => 1
[1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0] => [1,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0,0] => [1,0,1,1,1,1,0,1,1,1,1,0,0,0,0,0,0,0] => [2,2,2,2,1,1,1,1] => 16
[1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0,0] => [1,0,1,1,1,1,1,0,1,1,0,1,0,0,0,0,0,0] => [3,2,2,1,1,1,1,1] => 12
>>> Load all 123 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The product of the parts of an integer partition.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
to partition
Description
The cut-out partition of a Dyck path.
The partition $\lambda$ associated to a Dyck path is defined to be the complementary partition inside the staircase partition $(n-1,\ldots,2,1)$ when cutting out $D$ considered as a path from $(0,0)$ to $(n,n)$.
In other words, $\lambda_{i}$ is the number of down-steps before the $(n+1-i)$-th up-step of $D$.
This map is a bijection between Dyck paths of size $n$ and partitions inside the staircase partition $(n-1,\ldots,2,1)$.
The partition $\lambda$ associated to a Dyck path is defined to be the complementary partition inside the staircase partition $(n-1,\ldots,2,1)$ when cutting out $D$ considered as a path from $(0,0)$ to $(n,n)$.
In other words, $\lambda_{i}$ is the number of down-steps before the $(n+1-i)$-th up-step of $D$.
This map is a bijection between Dyck paths of size $n$ and partitions inside the staircase partition $(n-1,\ldots,2,1)$.
Map
promotion
Description
The promotion of the two-row standard Young tableau of a Dyck path.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
Dyck paths of semilength $n$ are in bijection with standard Young tableaux of shape $(n^2)$, see Mp00033to two-row standard tableau.
This map is the bijection on such standard Young tableaux given by Schützenberger's promotion. For definitions and details, see [1] and the references therein.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!