Processing math: 100%

Identifier
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [3,1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [4,1,2,3] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,1,0,0,1,0] => [2,4,1,3] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [5,1,2,3,4] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [3,1,5,2,4] => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0] => [2,5,1,3,4] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,0,1,0] => [5,3,1,2,4] => 2
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0] => [2,3,5,1,4] => 1
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [6,1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [4,1,2,6,3,5] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => [3,1,6,2,4,5] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [6,1,4,2,3,5] => 2
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [3,1,4,6,2,5] => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,0,1,0,1,0] => [2,6,1,3,4,5] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [2,4,1,6,3,5] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [6,3,1,2,4,5] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [6,4,1,2,3,5] => 3
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => [4,3,1,6,2,5] => 2
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => [2,3,6,1,4,5] => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [2,6,4,1,3,5] => 2
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [6,3,4,1,2,5] => 2
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [2,3,4,6,1,5] => 1
[] => [1,0] => [1,0] => [2,1] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of big deficiencies of a permutation.
A big deficiency of a permutation π is an index i such that iπ(i)>1.
This statistic is equidistributed with any of the numbers of big exceedences, big descents and big ascents.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.
Map
inverse promotion
Description
The inverse promotion of a Dyck path.
This is the bijection obtained by applying the inverse of Schützenberger's promotion to the corresponding two rowed standard Young tableau.