Identifier
- St000713: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>10
[1,1]=>5
[3]=>20
[2,1]=>16
[1,1,1]=>0
[4]=>35
[3,1]=>35
[2,2]=>14
[2,1,1]=>0
[1,1,1,1]=>0
[5]=>56
[4,1]=>64
[3,2]=>40
[3,1,1]=>0
[2,2,1]=>0
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>84
[5,1]=>105
[4,2]=>81
[4,1,1]=>0
[3,3]=>30
[3,2,1]=>0
[3,1,1,1]=>0
[2,2,2]=>0
[2,2,1,1]=>0
[2,1,1,1,1]=>0
[1,1,1,1,1,1]=>0
[7]=>120
[6,1]=>160
[5,2]=>140
[5,1,1]=>0
[4,3]=>80
[4,2,1]=>0
[4,1,1,1]=>0
[3,3,1]=>0
[3,2,2]=>0
[3,2,1,1]=>0
[3,1,1,1,1]=>0
[2,2,2,1]=>0
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>165
[7,1]=>231
[6,2]=>220
[6,1,1]=>0
[5,3]=>154
[5,2,1]=>0
[5,1,1,1]=>0
[4,4]=>55
[4,3,1]=>0
[4,2,2]=>0
[4,2,1,1]=>0
[4,1,1,1,1]=>0
[3,3,2]=>0
[3,3,1,1]=>0
[3,2,2,1]=>0
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>0
[2,2,2,2]=>0
[2,2,2,1,1]=>0
[2,2,1,1,1,1]=>0
[2,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1]=>0
[9]=>220
[8,1]=>320
[7,2]=>324
[7,1,1]=>0
[6,3]=>256
[6,2,1]=>0
[6,1,1,1]=>0
[5,4]=>140
[5,3,1]=>0
[5,2,2]=>0
[5,2,1,1]=>0
[5,1,1,1,1]=>0
[4,4,1]=>0
[4,3,2]=>0
[4,3,1,1]=>0
[4,2,2,1]=>0
[4,2,1,1,1]=>0
[4,1,1,1,1,1]=>0
[3,3,3]=>0
[3,3,2,1]=>0
[3,3,1,1,1]=>0
[3,2,2,2]=>0
[3,2,2,1,1]=>0
[3,2,1,1,1,1]=>0
[3,1,1,1,1,1,1]=>0
[2,2,2,2,1]=>0
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>286
[9,1]=>429
[8,2]=>455
[8,1,1]=>0
[7,3]=>390
[7,2,1]=>0
[7,1,1,1]=>0
[6,4]=>260
[6,3,1]=>0
[6,2,2]=>0
[6,2,1,1]=>0
[6,1,1,1,1]=>0
[5,5]=>91
[5,4,1]=>0
[5,3,2]=>0
[5,3,1,1]=>0
[5,2,2,1]=>0
[5,2,1,1,1]=>0
[5,1,1,1,1,1]=>0
[4,4,2]=>0
[4,4,1,1]=>0
[4,3,3]=>0
[4,3,2,1]=>0
[4,3,1,1,1]=>0
[4,2,2,2]=>0
[4,2,2,1,1]=>0
[4,2,1,1,1,1]=>0
[4,1,1,1,1,1,1]=>0
[3,3,3,1]=>0
[3,3,2,2]=>0
[3,3,2,1,1]=>0
[3,3,1,1,1,1]=>0
[3,2,2,2,1]=>0
[3,2,2,1,1,1]=>0
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>0
[2,2,2,2,2]=>0
[2,2,2,2,1,1]=>0
[2,2,2,1,1,1,1]=>0
[2,2,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>364
[10,1]=>560
[9,2]=>616
[9,1,1]=>0
[8,3]=>560
[8,2,1]=>0
[8,1,1,1]=>0
[7,4]=>420
[7,3,1]=>0
[7,2,2]=>0
[7,2,1,1]=>0
[7,1,1,1,1]=>0
[6,5]=>224
[6,4,1]=>0
[6,3,2]=>0
[6,3,1,1]=>0
[6,2,2,1]=>0
[6,2,1,1,1]=>0
[6,1,1,1,1,1]=>0
[5,5,1]=>0
[5,4,2]=>0
[5,4,1,1]=>0
[5,3,3]=>0
[5,3,2,1]=>0
[5,3,1,1,1]=>0
[5,2,2,2]=>0
[5,2,2,1,1]=>0
[5,2,1,1,1,1]=>0
[5,1,1,1,1,1,1]=>0
[4,4,3]=>0
[4,4,2,1]=>0
[4,4,1,1,1]=>0
[4,3,3,1]=>0
[4,3,2,2]=>0
[4,3,2,1,1]=>0
[4,3,1,1,1,1]=>0
[4,2,2,2,1]=>0
[4,2,2,1,1,1]=>0
[4,2,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1]=>0
[3,3,3,2]=>0
[3,3,3,1,1]=>0
[3,3,2,2,1]=>0
[3,3,2,1,1,1]=>0
[3,3,1,1,1,1,1]=>0
[3,2,2,2,2]=>0
[3,2,2,2,1,1]=>0
[3,2,2,1,1,1,1]=>0
[3,2,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,1]=>0
[2,2,2,2,1,1,1]=>0
[2,2,2,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>455
[11,1]=>715
[10,2]=>810
[10,1,1]=>0
[9,3]=>770
[9,2,1]=>0
[9,1,1,1]=>0
[8,4]=>625
[8,3,1]=>0
[8,2,2]=>0
[8,2,1,1]=>0
[8,1,1,1,1]=>0
[7,5]=>405
[7,4,1]=>0
[7,3,2]=>0
[7,3,1,1]=>0
[7,2,2,1]=>0
[7,2,1,1,1]=>0
[7,1,1,1,1,1]=>0
[6,6]=>140
[6,5,1]=>0
[6,4,2]=>0
[6,4,1,1]=>0
[6,3,3]=>0
[6,3,2,1]=>0
[6,3,1,1,1]=>0
[6,2,2,2]=>0
[6,2,2,1,1]=>0
[6,2,1,1,1,1]=>0
[6,1,1,1,1,1,1]=>0
[5,5,2]=>0
[5,5,1,1]=>0
[5,4,3]=>0
[5,4,2,1]=>0
[5,4,1,1,1]=>0
[5,3,3,1]=>0
[5,3,2,2]=>0
[5,3,2,1,1]=>0
[5,3,1,1,1,1]=>0
[5,2,2,2,1]=>0
[5,2,2,1,1,1]=>0
[5,2,1,1,1,1,1]=>0
[5,1,1,1,1,1,1,1]=>0
[4,4,4]=>0
[4,4,3,1]=>0
[4,4,2,2]=>0
[4,4,2,1,1]=>0
[4,4,1,1,1,1]=>0
[4,3,3,2]=>0
[4,3,3,1,1]=>0
[4,3,2,2,1]=>0
[4,3,2,1,1,1]=>0
[4,3,1,1,1,1,1]=>0
[4,2,2,2,2]=>0
[4,2,2,2,1,1]=>0
[4,2,2,1,1,1,1]=>0
[4,2,1,1,1,1,1,1]=>0
[4,1,1,1,1,1,1,1,1]=>0
[3,3,3,3]=>0
[3,3,3,2,1]=>0
[3,3,3,1,1,1]=>0
[3,3,2,2,2]=>0
[3,3,2,2,1,1]=>0
[3,3,2,1,1,1,1]=>0
[3,3,1,1,1,1,1,1]=>0
[3,2,2,2,2,1]=>0
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>0
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>0
[2,2,2,2,2,2]=>0
[2,2,2,2,2,1,1]=>0
[2,2,2,2,1,1,1,1]=>0
[2,2,2,1,1,1,1,1,1]=>0
[2,2,1,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The dimension of the irreducible representation of Sp(4) labelled by an integer partition.
Consider the symplectic group $Sp(2n)$. Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.
For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.
Consider the symplectic group $Sp(2n)$. Then the integer partition $(\mu_1,\dots,\mu_k)$ of length at most $n$ corresponds to the weight vector $(\mu_1-\mu_2,\dots,\mu_{k-2}-\mu_{k-1},\mu_n,0,\dots,0)$.
For example, the integer partition $(2)$ labels the symmetric square of the vector representation, whereas the integer partition $(1,1)$ labels the second fundamental representation.
Code
def statistic(mu): C = CartanType("C2") if len(mu) <= C.rank() or (C.type()=="A" and len(mu) <= C.rank()+1): w = [m1-m2 for m1,m2 in zip(mu, mu[1:])] + [mu[-1]] + [0]*(C.rank()-len(mu)) return WeylDim(C, w) else: return 0
Created
Mar 21, 2017 at 08:29 by Martin Rubey
Updated
Mar 21, 2017 at 08:29 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!