Identifier
Values
[(1,2)] => 1
[(1,2),(3,4)] => 1
[(1,3),(2,4)] => 2
[(1,4),(2,3)] => 2
[(1,2),(3,4),(5,6)] => 1
[(1,3),(2,4),(5,6)] => 2
[(1,4),(2,3),(5,6)] => 2
[(1,5),(2,3),(4,6)] => 2
[(1,6),(2,3),(4,5)] => 2
[(1,6),(2,4),(3,5)] => 3
[(1,5),(2,4),(3,6)] => 3
[(1,4),(2,5),(3,6)] => 3
[(1,3),(2,5),(4,6)] => 2
[(1,2),(3,5),(4,6)] => 2
[(1,2),(3,6),(4,5)] => 2
[(1,3),(2,6),(4,5)] => 2
[(1,4),(2,6),(3,5)] => 3
[(1,5),(2,6),(3,4)] => 3
[(1,6),(2,5),(3,4)] => 3
[(1,2),(3,4),(5,6),(7,8)] => 1
[(1,3),(2,4),(5,6),(7,8)] => 2
[(1,4),(2,3),(5,6),(7,8)] => 2
[(1,5),(2,3),(4,6),(7,8)] => 2
[(1,6),(2,3),(4,5),(7,8)] => 2
[(1,7),(2,3),(4,5),(6,8)] => 2
[(1,8),(2,3),(4,5),(6,7)] => 2
[(1,8),(2,4),(3,5),(6,7)] => 3
[(1,7),(2,4),(3,5),(6,8)] => 3
[(1,6),(2,4),(3,5),(7,8)] => 3
[(1,5),(2,4),(3,6),(7,8)] => 3
[(1,4),(2,5),(3,6),(7,8)] => 3
[(1,3),(2,5),(4,6),(7,8)] => 2
[(1,2),(3,5),(4,6),(7,8)] => 2
[(1,2),(3,6),(4,5),(7,8)] => 2
[(1,3),(2,6),(4,5),(7,8)] => 2
[(1,4),(2,6),(3,5),(7,8)] => 3
[(1,5),(2,6),(3,4),(7,8)] => 3
[(1,6),(2,5),(3,4),(7,8)] => 3
[(1,7),(2,5),(3,4),(6,8)] => 3
[(1,8),(2,5),(3,4),(6,7)] => 3
[(1,8),(2,6),(3,4),(5,7)] => 3
[(1,7),(2,6),(3,4),(5,8)] => 3
[(1,6),(2,7),(3,4),(5,8)] => 3
[(1,5),(2,7),(3,4),(6,8)] => 3
[(1,4),(2,7),(3,5),(6,8)] => 3
[(1,3),(2,7),(4,5),(6,8)] => 2
[(1,2),(3,7),(4,5),(6,8)] => 2
[(1,2),(3,8),(4,5),(6,7)] => 2
[(1,3),(2,8),(4,5),(6,7)] => 2
[(1,4),(2,8),(3,5),(6,7)] => 3
[(1,5),(2,8),(3,4),(6,7)] => 3
[(1,6),(2,8),(3,4),(5,7)] => 3
[(1,7),(2,8),(3,4),(5,6)] => 3
[(1,8),(2,7),(3,4),(5,6)] => 3
[(1,8),(2,7),(3,5),(4,6)] => 4
[(1,7),(2,8),(3,5),(4,6)] => 4
[(1,6),(2,8),(3,5),(4,7)] => 4
[(1,5),(2,8),(3,6),(4,7)] => 4
[(1,4),(2,8),(3,6),(5,7)] => 3
[(1,3),(2,8),(4,6),(5,7)] => 3
[(1,2),(3,8),(4,6),(5,7)] => 3
[(1,2),(3,7),(4,6),(5,8)] => 3
[(1,3),(2,7),(4,6),(5,8)] => 3
[(1,4),(2,7),(3,6),(5,8)] => 3
[(1,5),(2,7),(3,6),(4,8)] => 4
[(1,6),(2,7),(3,5),(4,8)] => 4
[(1,7),(2,6),(3,5),(4,8)] => 4
[(1,8),(2,6),(3,5),(4,7)] => 4
[(1,8),(2,5),(3,6),(4,7)] => 4
[(1,7),(2,5),(3,6),(4,8)] => 4
[(1,6),(2,5),(3,7),(4,8)] => 4
[(1,5),(2,6),(3,7),(4,8)] => 4
[(1,4),(2,6),(3,7),(5,8)] => 3
[(1,3),(2,6),(4,7),(5,8)] => 3
[(1,2),(3,6),(4,7),(5,8)] => 3
[(1,2),(3,5),(4,7),(6,8)] => 2
[(1,3),(2,5),(4,7),(6,8)] => 2
[(1,4),(2,5),(3,7),(6,8)] => 3
[(1,5),(2,4),(3,7),(6,8)] => 3
[(1,6),(2,4),(3,7),(5,8)] => 3
[(1,7),(2,4),(3,6),(5,8)] => 3
[(1,8),(2,4),(3,6),(5,7)] => 3
[(1,8),(2,3),(4,6),(5,7)] => 3
[(1,7),(2,3),(4,6),(5,8)] => 3
[(1,6),(2,3),(4,7),(5,8)] => 3
[(1,5),(2,3),(4,7),(6,8)] => 2
[(1,4),(2,3),(5,7),(6,8)] => 2
[(1,3),(2,4),(5,7),(6,8)] => 2
[(1,2),(3,4),(5,7),(6,8)] => 2
[(1,2),(3,4),(5,8),(6,7)] => 2
[(1,3),(2,4),(5,8),(6,7)] => 2
[(1,4),(2,3),(5,8),(6,7)] => 2
[(1,5),(2,3),(4,8),(6,7)] => 2
[(1,6),(2,3),(4,8),(5,7)] => 3
[(1,7),(2,3),(4,8),(5,6)] => 3
[(1,8),(2,3),(4,7),(5,6)] => 3
[(1,8),(2,4),(3,7),(5,6)] => 3
[(1,7),(2,4),(3,8),(5,6)] => 3
[(1,6),(2,4),(3,8),(5,7)] => 3
[(1,5),(2,4),(3,8),(6,7)] => 3
[(1,4),(2,5),(3,8),(6,7)] => 3
>>> Load all 1480 entries. <<<[(1,3),(2,5),(4,8),(6,7)] => 2
[(1,2),(3,5),(4,8),(6,7)] => 2
[(1,2),(3,6),(4,8),(5,7)] => 3
[(1,3),(2,6),(4,8),(5,7)] => 3
[(1,4),(2,6),(3,8),(5,7)] => 3
[(1,5),(2,6),(3,8),(4,7)] => 4
[(1,6),(2,5),(3,8),(4,7)] => 4
[(1,7),(2,5),(3,8),(4,6)] => 4
[(1,8),(2,5),(3,7),(4,6)] => 4
[(1,8),(2,6),(3,7),(4,5)] => 4
[(1,7),(2,6),(3,8),(4,5)] => 4
[(1,6),(2,7),(3,8),(4,5)] => 4
[(1,5),(2,7),(3,8),(4,6)] => 4
[(1,4),(2,7),(3,8),(5,6)] => 3
[(1,3),(2,7),(4,8),(5,6)] => 3
[(1,2),(3,7),(4,8),(5,6)] => 3
[(1,2),(3,8),(4,7),(5,6)] => 3
[(1,3),(2,8),(4,7),(5,6)] => 3
[(1,4),(2,8),(3,7),(5,6)] => 3
[(1,5),(2,8),(3,7),(4,6)] => 4
[(1,6),(2,8),(3,7),(4,5)] => 4
[(1,7),(2,8),(3,6),(4,5)] => 4
[(1,8),(2,7),(3,6),(4,5)] => 4
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 1
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 2
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 2
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 2
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 2
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 2
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 2
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 2
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 2
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 3
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 3
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 3
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 3
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 3
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 3
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 3
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 2
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 2
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 2
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 2
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 3
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 3
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 3
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 3
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 3
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 3
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 3
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 3
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 3
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 3
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 3
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 3
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 3
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 3
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 2
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 2
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 2
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 3
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 3
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 3
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 3
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 3
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 3
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 3
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 3
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 3
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 3
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 3
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 3
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 3
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 3
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 2
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 2
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 2
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 3
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 3
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 3
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 3
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 3
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 3
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 3
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 4
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 4
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 4
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 4
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 4
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 4
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 3
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 3
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 3
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 3
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 3
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 3
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 4
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 4
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 4
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 4
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 4
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 4
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 4
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 4
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 4
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 4
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 4
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 4
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 3
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 3
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 3
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 3
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 3
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 3
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 4
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 4
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 4
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 4
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 4
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 4
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 4
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 4
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 4
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 4
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 4
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 4
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 3
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 3
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 2
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 3
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 3
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 3
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 3
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 3
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 3
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 3
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 3
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 3
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 3
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 3
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 3
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 2
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 2
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 2
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 2
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 2
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 2
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 2
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 2
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 3
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 3
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 3
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 3
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 3
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 3
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 3
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 3
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 3
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 3
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 3
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 3
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 2
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 3
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 3
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 3
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 4
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 4
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 4
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 4
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 4
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 4
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 4
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 4
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 4
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 4
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 4
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 4
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 3
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 3
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 3
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 3
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 3
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 3
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 4
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 4
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 4
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 4
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 4
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 4
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 4
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 4
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 4
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 4
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 4
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 4
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 3
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 3
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 3
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 3
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 3
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 3
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 4
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 4
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 4
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 4
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 4
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 4
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 4
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 4
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 4
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 4
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 4
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 4
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 3
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 3
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 3
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 3
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 3
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 3
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 4
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 4
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 4
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 4
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 4
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 4
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 4
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 4
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 4
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 4
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 4
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 4
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 3
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 3
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 3
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 3
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 3
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 3
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 4
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 4
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 4
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 4
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 4
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 4
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 4
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 4
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 4
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 4
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 4
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 4
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 3
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 3
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 3
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 2
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 3
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 3
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 3
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 3
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 3
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 3
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 3
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 3
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 3
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 3
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 3
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 3
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 2
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 2
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 2
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 2
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 2
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 2
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 2
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 3
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 3
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 3
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 3
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 3
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 3
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 3
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 3
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 3
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 3
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 3
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 3
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 2
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 3
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 3
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 3
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 4
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 4
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 4
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 4
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 4
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 4
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 4
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 4
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 4
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 4
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 4
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 4
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 3
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 3
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 3
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 3
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 3
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 3
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 4
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 4
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 4
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 4
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 4
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 4
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 4
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 4
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 4
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 4
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 4
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 4
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 3
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 3
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 3
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 3
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 3
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 3
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 4
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 4
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 4
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 4
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 4
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 4
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 5
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 5
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 5
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 5
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 5
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 4
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 4
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 4
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 4
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 4
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 4
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 4
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 4
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 5
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 5
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 5
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 5
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 5
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 5
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 5
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 5
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 5
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 5
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 4
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 4
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 4
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 4
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 4
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 4
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 4
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 4
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 5
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 5
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 5
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 5
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 5
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 4
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 4
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 4
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 4
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 4
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 4
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 3
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 3
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 3
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 3
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 3
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 3
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 3
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 3
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 4
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 4
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 4
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 4
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 4
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 4
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 4
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 4
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 3
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 3
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 3
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 3
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 3
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 3
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 3
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 3
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 4
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 4
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 4
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 4
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 4
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 4
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 4
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 4
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 3
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 3
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 3
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 3
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 3
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 3
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 3
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 3
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 4
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 4
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 4
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 4
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 4
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 4
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 5
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 5
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 5
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 5
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 5
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 4
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 4
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 4
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 4
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 4
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 4
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 4
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 4
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 5
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 5
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 5
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 5
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 5
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 5
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 5
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 5
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 5
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 5
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 4
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 4
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 4
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 4
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 4
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 4
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 4
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 4
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 5
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 5
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 5
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 5
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 5
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 5
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 5
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 5
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 5
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 5
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 4
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 4
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 4
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 4
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 4
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 4
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 4
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 4
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 5
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 5
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 5
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 5
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 5
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 5
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 5
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 5
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 5
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 5
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 4
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 4
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 4
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 4
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 4
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 4
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 4
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 4
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 5
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 5
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 5
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 5
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 5
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 4
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 4
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 4
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 4
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 4
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 4
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 3
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 3
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 3
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 3
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 3
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 3
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 3
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 3
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 4
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 4
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 4
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 4
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 4
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 4
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 4
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 4
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 3
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 3
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 3
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 3
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 3
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 2
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 2
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 2
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 3
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 3
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 3
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 3
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 3
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 3
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 3
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 3
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 3
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 3
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 3
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 3
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 2
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 3
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 3
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 3
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 4
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 4
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 4
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 4
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 4
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 4
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 4
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 4
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 4
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 4
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 4
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 4
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 3
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 3
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 3
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 3
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 3
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 3
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 4
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 4
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 4
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 4
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 4
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 4
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 4
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 4
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 4
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 4
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 4
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 4
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 3
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 3
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 3
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 3
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 3
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 3
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 4
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 4
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 4
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 4
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 4
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 4
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 4
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 4
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 4
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 4
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 3
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 3
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 3
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 3
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 3
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 3
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 3
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 3
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 3
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 3
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 4
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 4
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 4
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 4
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 4
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 4
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 4
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 4
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 3
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 3
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 3
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 3
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 3
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 2
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 2
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 3
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 3
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 3
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 3
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 3
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 3
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 3
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 3
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 3
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 3
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 3
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 3
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 3
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 3
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 2
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 3
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 3
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 3
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 3
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 3
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 3
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 3
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 3
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 3
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 3
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 2
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 2
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 2
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 2
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 2
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 2
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 2
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 2
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 2
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 2
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 2
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 3
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 3
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 3
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 3
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 3
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 3
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 3
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 3
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 3
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 3
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 2
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 2
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 2
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 3
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 3
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 3
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 3
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 3
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 3
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 3
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 3
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 3
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 3
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 3
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 3
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 3
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 3
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 2
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 3
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 3
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 3
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 3
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 3
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 4
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 4
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 4
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 4
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 4
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 4
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 4
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 4
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 3
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 3
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 3
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 3
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 3
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 3
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 3
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 3
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 3
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 3
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 4
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 4
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 4
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 4
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 4
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 4
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 4
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 4
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 4
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 4
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 3
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 3
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 3
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 3
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 3
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 3
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 4
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 4
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 4
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 4
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 4
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 4
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 4
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 4
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 4
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 4
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 4
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 4
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 3
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 3
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 3
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 3
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 3
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 3
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 4
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 4
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 4
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 4
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 4
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 4
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 4
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 4
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 4
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 4
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 4
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 4
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 3
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 3
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 3
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 2
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 3
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 3
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 3
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 3
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 3
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 3
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 3
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 3
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 3
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 3
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 3
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 3
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 2
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 2
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 2
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 3
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 3
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 3
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 3
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 3
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 4
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 4
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 4
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 4
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 4
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 4
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 4
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 4
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 3
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 3
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 3
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 3
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 3
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 3
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 3
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 3
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 4
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 4
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 4
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 4
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 4
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 4
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 5
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 5
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 5
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 5
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 5
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 4
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 4
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 4
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 4
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 4
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 4
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 4
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 4
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 5
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 5
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 5
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 5
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 5
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 5
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 5
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 5
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 5
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 5
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 4
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 4
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 4
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 4
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 4
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 4
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 4
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 4
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 5
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 5
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 5
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 5
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 5
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 5
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 5
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 5
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 5
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 5
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 4
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 4
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 4
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 4
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 4
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 4
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 4
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 4
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 5
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 5
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 5
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 5
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 5
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 5
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 5
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 5
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 5
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 5
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 4
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 4
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 4
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 4
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 4
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 4
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 4
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 4
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 5
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 5
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 5
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 5
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 5
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 4
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 4
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 4
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 4
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 4
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 4
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 3
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 3
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 3
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 3
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 3
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 3
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 3
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 4
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 4
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 4
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 4
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 4
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 4
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 4
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 4
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 3
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 3
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 3
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 3
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 3
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 3
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 3
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 3
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 3
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 4
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 4
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 4
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 4
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 4
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 4
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 4
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 4
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 3
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 3
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 3
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 3
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 3
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 3
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 3
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 3
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 4
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 4
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 4
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 4
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 4
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 4
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 5
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 5
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 5
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 5
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 5
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 4
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 4
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 4
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 4
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 4
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 4
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 4
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 4
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 5
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 5
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 5
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 5
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 5
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 5
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 5
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 5
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 5
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 5
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 4
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 4
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 4
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 4
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 4
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 4
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 4
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 4
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 5
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 5
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 5
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 5
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 5
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7)] => 6
[(1,2),(3,10),(4,9),(5,8),(6,7),(11,12)] => 4
[(1,12),(2,3),(4,9),(5,8),(6,7),(10,11)] => 4
[(1,2),(3,12),(4,9),(5,8),(6,7),(10,11)] => 4
[(1,10),(2,3),(4,9),(5,8),(6,7),(11,12)] => 4
[(1,12),(2,11),(3,4),(5,8),(6,7),(9,10)] => 4
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 2
[(1,12),(2,3),(4,11),(5,8),(6,7),(9,10)] => 4
[(1,2),(3,12),(4,11),(5,8),(6,7),(9,10)] => 4
[(1,4),(2,3),(5,8),(6,7),(9,10),(11,12)] => 2
[(1,12),(2,9),(3,4),(5,8),(6,7),(10,11)] => 4
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 2
[(1,10),(2,9),(3,4),(5,8),(6,7),(11,12)] => 4
[(1,4),(2,3),(5,8),(6,7),(9,12),(10,11)] => 2
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9)] => 4
[(1,2),(3,10),(4,5),(6,7),(8,9),(11,12)] => 2
[(1,12),(2,3),(4,5),(6,7),(8,9),(10,11)] => 2
[(1,2),(3,12),(4,5),(6,7),(8,9),(10,11)] => 2
[(1,10),(2,3),(4,5),(6,7),(8,9),(11,12)] => 2
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9)] => 4
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 2
[(1,12),(2,3),(4,11),(5,10),(6,7),(8,9)] => 4
[(1,2),(3,12),(4,11),(5,10),(6,7),(8,9)] => 4
[(1,4),(2,3),(5,10),(6,7),(8,9),(11,12)] => 2
[(1,12),(2,5),(3,4),(6,7),(8,9),(10,11)] => 3
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 2
[(1,10),(2,5),(3,4),(6,7),(8,9),(11,12)] => 3
[(1,4),(2,3),(5,12),(6,7),(8,9),(10,11)] => 2
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10)] => 4
[(1,2),(3,8),(4,5),(6,7),(9,10),(11,12)] => 2
[(1,12),(2,3),(4,5),(6,7),(8,11),(9,10)] => 3
[(1,2),(3,12),(4,5),(6,7),(8,11),(9,10)] => 3
[(1,8),(2,3),(4,5),(6,7),(9,10),(11,12)] => 2
[(1,12),(2,9),(3,8),(4,5),(6,7),(10,11)] => 4
[(1,2),(3,8),(4,5),(6,7),(9,12),(10,11)] => 2
[(1,10),(2,9),(3,8),(4,5),(6,7),(11,12)] => 4
[(1,8),(2,3),(4,5),(6,7),(9,12),(10,11)] => 2
[(1,12),(2,5),(3,4),(6,7),(8,11),(9,10)] => 3
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 3
[(1,8),(2,5),(3,4),(6,7),(9,10),(11,12)] => 3
[(1,4),(2,3),(5,12),(6,7),(8,11),(9,10)] => 3
[(1,8),(2,5),(3,4),(6,7),(9,12),(10,11)] => 3
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8)] => 5
[(1,2),(3,10),(4,9),(5,6),(7,8),(11,12)] => 3
[(1,12),(2,3),(4,9),(5,6),(7,8),(10,11)] => 3
[(1,2),(3,12),(4,9),(5,6),(7,8),(10,11)] => 3
[(1,10),(2,3),(4,9),(5,6),(7,8),(11,12)] => 3
[(1,12),(2,11),(3,4),(5,6),(7,8),(9,10)] => 3
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 1
[(1,12),(2,3),(4,11),(5,6),(7,8),(9,10)] => 3
[(1,2),(3,12),(4,11),(5,6),(7,8),(9,10)] => 3
[(1,4),(2,3),(5,6),(7,8),(9,10),(11,12)] => 2
[(1,12),(2,9),(3,4),(5,6),(7,8),(10,11)] => 3
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 2
[(1,10),(2,9),(3,4),(5,6),(7,8),(11,12)] => 3
[(1,4),(2,3),(5,6),(7,8),(9,12),(10,11)] => 2
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8)] => 5
[(1,2),(3,10),(4,5),(6,9),(7,8),(11,12)] => 3
[(1,12),(2,3),(4,5),(6,9),(7,8),(10,11)] => 3
[(1,2),(3,12),(4,5),(6,9),(7,8),(10,11)] => 3
[(1,10),(2,3),(4,5),(6,9),(7,8),(11,12)] => 3
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8)] => 5
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 3
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8)] => 5
[(1,2),(3,12),(4,11),(5,10),(6,9),(7,8)] => 5
[(1,4),(2,3),(5,10),(6,9),(7,8),(11,12)] => 3
[(1,12),(2,5),(3,4),(6,9),(7,8),(10,11)] => 3
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 3
[(1,10),(2,5),(3,4),(6,9),(7,8),(11,12)] => 3
[(1,4),(2,3),(5,12),(6,9),(7,8),(10,11)] => 3
[(1,12),(2,11),(3,6),(4,5),(7,8),(9,10)] => 4
[(1,2),(3,6),(4,5),(7,8),(9,10),(11,12)] => 2
[(1,12),(2,3),(4,5),(6,11),(7,8),(9,10)] => 3
[(1,2),(3,12),(4,5),(6,11),(7,8),(9,10)] => 3
[(1,6),(2,3),(4,5),(7,8),(9,10),(11,12)] => 2
[(1,12),(2,9),(3,6),(4,5),(7,8),(10,11)] => 4
[(1,2),(3,6),(4,5),(7,8),(9,12),(10,11)] => 2
[(1,10),(2,9),(3,6),(4,5),(7,8),(11,12)] => 4
[(1,6),(2,3),(4,5),(7,8),(9,12),(10,11)] => 2
[(1,12),(2,5),(3,4),(6,11),(7,8),(9,10)] => 3
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 3
[(1,6),(2,5),(3,4),(7,8),(9,10),(11,12)] => 3
[(1,4),(2,3),(5,12),(6,11),(7,8),(9,10)] => 3
[(1,6),(2,5),(3,4),(7,8),(9,12),(10,11)] => 3
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9)] => 5
[(1,2),(3,10),(4,7),(5,6),(8,9),(11,12)] => 3
[(1,12),(2,3),(4,7),(5,6),(8,9),(10,11)] => 3
[(1,2),(3,12),(4,7),(5,6),(8,9),(10,11)] => 3
[(1,10),(2,3),(4,7),(5,6),(8,9),(11,12)] => 3
[(1,12),(2,11),(3,4),(5,6),(7,10),(8,9)] => 4
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 2
[(1,12),(2,3),(4,11),(5,6),(7,10),(8,9)] => 4
[(1,2),(3,12),(4,11),(5,6),(7,10),(8,9)] => 4
[(1,4),(2,3),(5,6),(7,10),(8,9),(11,12)] => 2
[(1,12),(2,7),(3,4),(5,6),(8,9),(10,11)] => 3
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 2
[(1,10),(2,7),(3,4),(5,6),(8,9),(11,12)] => 3
[(1,4),(2,3),(5,6),(7,12),(8,9),(10,11)] => 2
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10)] => 5
[(1,2),(3,8),(4,7),(5,6),(9,10),(11,12)] => 3
[(1,12),(2,3),(4,7),(5,6),(8,11),(9,10)] => 3
[(1,2),(3,12),(4,7),(5,6),(8,11),(9,10)] => 3
[(1,8),(2,3),(4,7),(5,6),(9,10),(11,12)] => 3
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11)] => 5
[(1,2),(3,8),(4,7),(5,6),(9,12),(10,11)] => 3
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,12)] => 5
[(1,8),(2,3),(4,7),(5,6),(9,12),(10,11)] => 3
[(1,12),(2,7),(3,4),(5,6),(8,11),(9,10)] => 3
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 3
[(1,8),(2,7),(3,4),(5,6),(9,10),(11,12)] => 3
[(1,4),(2,3),(5,6),(7,12),(8,11),(9,10)] => 3
[(1,8),(2,7),(3,4),(5,6),(9,12),(10,11)] => 3
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9)] => 4
[(1,2),(3,6),(4,5),(7,10),(8,9),(11,12)] => 2
[(1,12),(2,3),(4,5),(6,11),(7,10),(8,9)] => 4
[(1,2),(3,12),(4,5),(6,11),(7,10),(8,9)] => 4
[(1,6),(2,3),(4,5),(7,10),(8,9),(11,12)] => 2
[(1,12),(2,7),(3,6),(4,5),(8,9),(10,11)] => 4
[(1,2),(3,6),(4,5),(7,12),(8,9),(10,11)] => 2
[(1,10),(2,7),(3,6),(4,5),(8,9),(11,12)] => 4
[(1,6),(2,3),(4,5),(7,12),(8,9),(10,11)] => 2
[(1,12),(2,5),(3,4),(6,11),(7,10),(8,9)] => 4
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 4
[(1,6),(2,5),(3,4),(7,10),(8,9),(11,12)] => 3
[(1,4),(2,3),(5,12),(6,11),(7,10),(8,9)] => 4
[(1,6),(2,5),(3,4),(7,12),(8,9),(10,11)] => 3
[(1,12),(2,7),(3,6),(4,5),(8,11),(9,10)] => 4
[(1,2),(3,6),(4,5),(7,12),(8,11),(9,10)] => 3
[(1,8),(2,7),(3,6),(4,5),(9,10),(11,12)] => 4
[(1,6),(2,3),(4,5),(7,12),(8,11),(9,10)] => 3
[(1,8),(2,7),(3,6),(4,5),(9,12),(10,11)] => 4
[(1,6),(2,5),(3,4),(7,12),(8,11),(9,10)] => 3
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 2
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 2
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 3
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 2
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 2
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 2
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 3
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 3
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 4
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 2
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 2
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 2
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 2
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 2
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 3
[(1,2),(3,5),(4,8),(6,9),(7,10),(11,12)] => 3
[(1,2),(3,5),(4,8),(6,9),(7,11),(10,12)] => 3
[(1,2),(3,5),(4,8),(6,10),(7,11),(9,12)] => 3
[(1,2),(3,5),(4,9),(6,10),(7,11),(8,12)] => 4
[(1,2),(3,6),(4,7),(5,8),(9,10),(11,12)] => 3
[(1,2),(3,6),(4,7),(5,8),(9,11),(10,12)] => 3
[(1,2),(3,6),(4,7),(5,9),(8,10),(11,12)] => 3
[(1,2),(3,6),(4,7),(5,9),(8,11),(10,12)] => 3
[(1,2),(3,6),(4,7),(5,10),(8,11),(9,12)] => 3
[(1,2),(3,6),(4,8),(5,9),(7,10),(11,12)] => 3
[(1,2),(3,6),(4,8),(5,9),(7,11),(10,12)] => 3
[(1,2),(3,6),(4,8),(5,10),(7,11),(9,12)] => 3
[(1,2),(3,6),(4,9),(5,10),(7,11),(8,12)] => 4
[(1,2),(3,7),(4,8),(5,9),(6,10),(11,12)] => 4
[(1,2),(3,7),(4,8),(5,9),(6,11),(10,12)] => 4
[(1,2),(3,7),(4,8),(5,10),(6,11),(9,12)] => 4
[(1,2),(3,7),(4,9),(5,10),(6,11),(8,12)] => 4
[(1,2),(3,8),(4,9),(5,10),(6,11),(7,12)] => 5
[(1,3),(2,4),(5,6),(7,8),(9,10),(11,12)] => 2
[(1,3),(2,4),(5,6),(7,8),(9,11),(10,12)] => 2
[(1,3),(2,4),(5,6),(7,9),(8,10),(11,12)] => 2
[(1,3),(2,4),(5,6),(7,9),(8,11),(10,12)] => 2
[(1,3),(2,4),(5,6),(7,10),(8,11),(9,12)] => 3
[(1,3),(2,4),(5,7),(6,8),(9,10),(11,12)] => 2
[(1,3),(2,4),(5,7),(6,8),(9,11),(10,12)] => 2
[(1,3),(2,4),(5,7),(6,9),(8,10),(11,12)] => 2
[(1,3),(2,4),(5,7),(6,9),(8,11),(10,12)] => 2
[(1,3),(2,4),(5,7),(6,10),(8,11),(9,12)] => 3
[(1,3),(2,4),(5,8),(6,9),(7,10),(11,12)] => 3
[(1,3),(2,4),(5,8),(6,9),(7,11),(10,12)] => 3
[(1,3),(2,4),(5,8),(6,10),(7,11),(9,12)] => 3
[(1,3),(2,4),(5,9),(6,10),(7,11),(8,12)] => 4
[(1,3),(2,5),(4,6),(7,8),(9,10),(11,12)] => 2
[(1,3),(2,5),(4,6),(7,8),(9,11),(10,12)] => 2
[(1,3),(2,5),(4,6),(7,9),(8,10),(11,12)] => 2
[(1,3),(2,5),(4,6),(7,9),(8,11),(10,12)] => 2
[(1,3),(2,5),(4,6),(7,10),(8,11),(9,12)] => 3
[(1,3),(2,5),(4,7),(6,8),(9,10),(11,12)] => 2
[(1,3),(2,5),(4,7),(6,8),(9,11),(10,12)] => 2
[(1,3),(2,5),(4,7),(6,9),(8,10),(11,12)] => 2
[(1,3),(2,5),(4,7),(6,9),(8,11),(10,12)] => 2
[(1,3),(2,5),(4,7),(6,10),(8,11),(9,12)] => 3
[(1,3),(2,5),(4,8),(6,9),(7,10),(11,12)] => 3
[(1,3),(2,5),(4,8),(6,9),(7,11),(10,12)] => 3
[(1,3),(2,5),(4,8),(6,10),(7,11),(9,12)] => 3
[(1,3),(2,5),(4,9),(6,10),(7,11),(8,12)] => 4
[(1,3),(2,6),(4,7),(5,8),(9,10),(11,12)] => 3
[(1,3),(2,6),(4,7),(5,8),(9,11),(10,12)] => 3
[(1,3),(2,6),(4,7),(5,9),(8,10),(11,12)] => 3
[(1,3),(2,6),(4,7),(5,9),(8,11),(10,12)] => 3
[(1,3),(2,6),(4,7),(5,10),(8,11),(9,12)] => 3
[(1,3),(2,6),(4,8),(5,9),(7,10),(11,12)] => 3
[(1,3),(2,6),(4,8),(5,9),(7,11),(10,12)] => 3
[(1,3),(2,6),(4,8),(5,10),(7,11),(9,12)] => 3
[(1,3),(2,6),(4,9),(5,10),(7,11),(8,12)] => 4
[(1,3),(2,7),(4,8),(5,9),(6,10),(11,12)] => 4
[(1,3),(2,7),(4,8),(5,9),(6,11),(10,12)] => 4
[(1,3),(2,7),(4,8),(5,10),(6,11),(9,12)] => 4
[(1,3),(2,7),(4,9),(5,10),(6,11),(8,12)] => 4
[(1,3),(2,8),(4,9),(5,10),(6,11),(7,12)] => 5
[(1,4),(2,5),(3,6),(7,8),(9,10),(11,12)] => 3
[(1,4),(2,5),(3,6),(7,8),(9,11),(10,12)] => 3
[(1,4),(2,5),(3,6),(7,9),(8,10),(11,12)] => 3
[(1,4),(2,5),(3,6),(7,9),(8,11),(10,12)] => 3
[(1,4),(2,5),(3,6),(7,10),(8,11),(9,12)] => 3
[(1,4),(2,5),(3,7),(6,8),(9,10),(11,12)] => 3
[(1,4),(2,5),(3,7),(6,8),(9,11),(10,12)] => 3
[(1,4),(2,5),(3,7),(6,9),(8,10),(11,12)] => 3
[(1,4),(2,5),(3,7),(6,9),(8,11),(10,12)] => 3
[(1,4),(2,5),(3,7),(6,10),(8,11),(9,12)] => 3
[(1,4),(2,5),(3,8),(6,9),(7,10),(11,12)] => 3
[(1,4),(2,5),(3,8),(6,9),(7,11),(10,12)] => 3
[(1,4),(2,5),(3,8),(6,10),(7,11),(9,12)] => 3
[(1,4),(2,5),(3,9),(6,10),(7,11),(8,12)] => 4
[(1,4),(2,6),(3,7),(5,8),(9,10),(11,12)] => 3
[(1,4),(2,6),(3,7),(5,8),(9,11),(10,12)] => 3
[(1,4),(2,6),(3,7),(5,9),(8,10),(11,12)] => 3
[(1,4),(2,6),(3,7),(5,9),(8,11),(10,12)] => 3
[(1,4),(2,6),(3,7),(5,10),(8,11),(9,12)] => 3
[(1,4),(2,6),(3,8),(5,9),(7,10),(11,12)] => 3
[(1,4),(2,6),(3,8),(5,9),(7,11),(10,12)] => 3
[(1,4),(2,6),(3,8),(5,10),(7,11),(9,12)] => 3
[(1,4),(2,6),(3,9),(5,10),(7,11),(8,12)] => 4
[(1,4),(2,7),(3,8),(5,9),(6,10),(11,12)] => 4
[(1,4),(2,7),(3,8),(5,9),(6,11),(10,12)] => 4
[(1,4),(2,7),(3,8),(5,10),(6,11),(9,12)] => 4
[(1,4),(2,7),(3,9),(5,10),(6,11),(8,12)] => 4
[(1,4),(2,8),(3,9),(5,10),(6,11),(7,12)] => 5
[(1,5),(2,6),(3,7),(4,8),(9,10),(11,12)] => 4
[(1,5),(2,6),(3,7),(4,8),(9,11),(10,12)] => 4
[(1,5),(2,6),(3,7),(4,9),(8,10),(11,12)] => 4
[(1,5),(2,6),(3,7),(4,9),(8,11),(10,12)] => 4
[(1,5),(2,6),(3,7),(4,10),(8,11),(9,12)] => 4
[(1,5),(2,6),(3,8),(4,9),(7,10),(11,12)] => 4
[(1,5),(2,6),(3,8),(4,9),(7,11),(10,12)] => 4
[(1,5),(2,6),(3,8),(4,10),(7,11),(9,12)] => 4
[(1,5),(2,6),(3,9),(4,10),(7,11),(8,12)] => 4
[(1,5),(2,7),(3,8),(4,9),(6,10),(11,12)] => 4
[(1,5),(2,7),(3,8),(4,9),(6,11),(10,12)] => 4
[(1,5),(2,7),(3,8),(4,10),(6,11),(9,12)] => 4
[(1,5),(2,7),(3,9),(4,10),(6,11),(8,12)] => 4
[(1,5),(2,8),(3,9),(4,10),(6,11),(7,12)] => 5
[(1,6),(2,7),(3,8),(4,9),(5,10),(11,12)] => 5
[(1,6),(2,7),(3,8),(4,9),(5,11),(10,12)] => 5
[(1,6),(2,7),(3,8),(4,10),(5,11),(9,12)] => 5
[(1,6),(2,7),(3,9),(4,10),(5,11),(8,12)] => 5
[(1,6),(2,8),(3,9),(4,10),(5,11),(7,12)] => 5
[(1,7),(2,8),(3,9),(4,10),(5,11),(6,12)] => 6
[(1,2),(3,14),(4,5),(6,13),(7,12),(8,11),(9,10)] => 5
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,9),(10,11)] => 4
[(1,2),(3,14),(4,13),(5,6),(7,12),(8,11),(9,10)] => 5
[(1,2),(3,14),(4,13),(5,8),(6,7),(9,12),(10,11)] => 4
[(1,2),(3,14),(4,13),(5,10),(6,7),(8,9),(11,12)] => 4
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,9),(10,11)] => 4
[(1,2),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10)] => 5
[(1,2),(3,14),(4,11),(5,10),(6,9),(7,8),(12,13)] => 5
[(1,2),(3,14),(4,13),(5,10),(6,9),(7,8),(11,12)] => 5
[(1,2),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11)] => 5
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10)] => 5
[(1,2),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9)] => 6
[(1,4),(2,3),(5,14),(6,13),(7,12),(8,11),(9,10)] => 5
[(1,12),(2,3),(4,11),(5,10),(6,9),(7,8),(13,14)] => 5
[(1,12),(2,11),(3,4),(5,10),(6,7),(8,9),(13,14)] => 4
[(1,12),(2,11),(3,4),(5,10),(6,9),(7,8),(13,14)] => 5
[(1,12),(2,11),(3,6),(4,5),(7,10),(8,9),(13,14)] => 4
[(1,12),(2,11),(3,8),(4,5),(6,7),(9,10),(13,14)] => 4
[(1,12),(2,11),(3,10),(4,5),(6,7),(8,9),(13,14)] => 4
[(1,12),(2,11),(3,10),(4,5),(6,9),(7,8),(13,14)] => 5
[(1,10),(2,9),(3,8),(4,7),(5,6),(11,14),(12,13)] => 5
[(1,12),(2,9),(3,8),(4,7),(5,6),(10,11),(13,14)] => 5
[(1,12),(2,11),(3,8),(4,7),(5,6),(9,10),(13,14)] => 5
[(1,12),(2,11),(3,10),(4,7),(5,6),(8,9),(13,14)] => 5
[(1,12),(2,11),(3,10),(4,9),(5,6),(7,8),(13,14)] => 5
[(1,12),(2,11),(3,10),(4,9),(5,8),(6,7),(13,14)] => 6
[(1,2),(3,16),(4,15),(5,14),(6,7),(8,13),(9,12),(10,11)] => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,10),(11,12)] => 5
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,8),(9,12),(10,11)] => 6
[(1,2),(3,16),(4,15),(5,14),(6,11),(7,10),(8,9),(12,13)] => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,10),(8,9),(11,12)] => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11)] => 6
[(1,2),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10)] => 7
[(1,14),(2,13),(3,12),(4,5),(6,11),(7,10),(8,9),(15,16)] => 6
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,8),(9,10),(15,16)] => 5
[(1,14),(2,13),(3,12),(4,11),(5,6),(7,10),(8,9),(15,16)] => 6
[(1,14),(2,13),(3,12),(4,9),(5,8),(6,7),(10,11),(15,16)] => 6
[(1,14),(2,13),(3,12),(4,11),(5,8),(6,7),(9,10),(15,16)] => 6
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,7),(8,9),(15,16)] => 6
[(1,14),(2,13),(3,12),(4,11),(5,10),(6,9),(7,8),(15,16)] => 7
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,10),(8,9),(17,18)] => 8
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11)] => 8
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,11),(7,8),(9,10),(17,18)] => 7
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,10),(11,12)] => 7
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,9),(7,8),(10,11),(17,18)] => 7
[(1,16),(2,15),(3,14),(4,13),(5,12),(6,7),(8,11),(9,10),(17,18)] => 7
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,11),(9,10),(12,13)] => 7
[(1,2),(3,18),(4,17),(5,16),(6,15),(7,14),(8,9),(10,13),(11,12)] => 7
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,11),(9,10),(19,20)] => 9
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,13),(11,12)] => 9
[(1,18),(2,17),(3,16),(4,15),(5,14),(6,13),(7,12),(8,9),(10,11),(19,20)] => 8
[(1,2),(3,20),(4,19),(5,18),(6,17),(7,16),(8,15),(9,14),(10,11),(12,13)] => 8
[(1,20),(2,19),(3,18),(4,17),(5,16),(6,15),(7,14),(8,13),(9,12),(10,11),(21,22)] => 10
[(1,2),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13)] => 10
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 2
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 3
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 2
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 3
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 3
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 3
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 2
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 2
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 2
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 3
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 3
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 2
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 3
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 3
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 2
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 3
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 3
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 3
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 3
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 3
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 3
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 3
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 3
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 2
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 2
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 3
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 3
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 4
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 3
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 4
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 4
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 3
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 4
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 4
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 3
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 3
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 3
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 3
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 4
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 4
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 4
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 4
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 3
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 4
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 4
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 3
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 2
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 3
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 3
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 3
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 3
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 3
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 4
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 4
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 3
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 4
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 4
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 3
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 4
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 4
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 3
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 3
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 3
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 3
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 3
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 4
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 4
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 4
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 4
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 3
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 4
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 2
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 2
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 2
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 3
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 3
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 2
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 3
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 3
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 2
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 2
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 2
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 3
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 2
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 3
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,2 1,8,6 1,26,54,24 1,80,360,384,120
$F_{2} = q$
$F_{4} = q + 2\ q^{2}$
$F_{6} = q + 8\ q^{2} + 6\ q^{3}$
$F_{8} = q + 26\ q^{2} + 54\ q^{3} + 24\ q^{4}$
$F_{10} = q + 80\ q^{2} + 360\ q^{3} + 384\ q^{4} + 120\ q^{5}$
Description
The size of the largest partition in the oscillating tableau corresponding to the perfect matching.
Equivalently, this is the maximal number of crosses in the corresponding triangular rook filling that can be covered by a rectangle.
Equivalently, this is the maximal number of crosses in the corresponding triangular rook filling that can be covered by a rectangle.
Code
def statistic(m):
return max((sum(1 for e in m if min(e) <= k and max(e) > k) for k in range(1, m.size())), default=0)
def statistic2(m):
filling = {(min(e)-1, m.size()-max(e)): 1 for e in m}
G = GrowthDiagram.rules.RSK()(filling, shape=[i for i in range(m.size()-1, 0, -1)])
return max(sum(p) for p in G.out_labels()[1::2])
Created
Mar 26, 2017 at 00:21 by Martin Rubey
Updated
Feb 02, 2023 at 10:29 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!