Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
Mp00023: Dyck paths —to non-crossing permutation⟶ Permutations
St000731: Permutations ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,0,1,0] => [1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => [1,2,3] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,1,0,1,0,0] => [2,3,1] => 1
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => [1,2,3,4] => 0
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => [1,3,4,2] => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [2,3,1,4] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => [4,2,3,1] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0] => [2,3,4,1] => 2
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5] => 0
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,2,4,5,3] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,3,4,2,5] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,1,0,1,0,0,0] => [1,5,3,4,2] => 0
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,3,4,5,2] => 2
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => [2,3,1,4,5] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,0,0,1,0,0] => [2,4,3,5,1] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => [4,2,3,1,5] => 0
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [5,3,4,2,1] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,3,5,1] => 1
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [2,3,4,1,5] => 2
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,1,0,1,0,0,0] => [2,5,3,4,1] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [2,3,4,5,1] => 3
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [5,2,3,4,1] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6] => 0
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,5,6,4] => 1
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,4,5,3,6] => 1
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,6,4,5,3] => 0
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,4,5,6,3] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => [1,3,4,2,5,6] => 1
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => [1,3,5,4,6,2] => 2
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0,1,0] => [1,5,3,4,2,6] => 0
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,1,1,1,0,1,0,0,0,0] => [1,6,4,5,3,2] => 1
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,1,0,0,1,0,0] => [1,5,3,4,6,2] => 1
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => [1,3,4,5,2,6] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0] => [1,3,6,4,5,2] => 1
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => [1,3,4,5,6,2] => 3
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,1,0,1,0,1,0,0,0] => [1,6,3,4,5,2] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => [2,3,1,4,5,6] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => [2,3,1,5,6,4] => 2
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0,1,0] => [2,4,3,5,1,6] => 2
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [2,6,4,3,5,1] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [2,4,3,5,6,1] => 3
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0,1,0] => [4,2,3,1,5,6] => 0
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [5,2,4,3,6,1] => 1
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0,1,0] => [5,3,4,2,1,6] => 1
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [6,5,3,4,2,1] => 0
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,3,4,2,6,1] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,1,0,1,0,0,1,0,0,1,0] => [4,2,3,5,1,6] => 1
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [6,2,4,3,5,1] => 0
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [4,2,3,5,6,1] => 2
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [6,3,4,2,5,1] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => [2,3,4,1,5,6] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [2,3,5,4,6,1] => 3
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0,1,0] => [2,5,3,4,1,6] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [2,6,4,5,3,1] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [2,5,3,4,6,1] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => [2,3,4,5,1,6] => 3
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [2,3,6,4,5,1] => 2
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [2,3,4,5,6,1] => 4
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [2,6,3,4,5,1] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0,1,0] => [5,2,3,4,1,6] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [6,2,4,5,3,1] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,2,3,4,6,1] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [6,3,4,5,2,1] => 2
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [6,2,3,4,5,1] => 0
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,2,3,4,5,6,7] => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,2,3,4,6,7,5] => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [1,2,3,5,6,4,7] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,2,3,7,5,6,4] => 0
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,2,3,5,6,7,4] => 2
[1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [1,2,4,5,3,6,7] => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,1,0,0] => [1,2,4,6,5,7,3] => 2
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0,1,0] => [1,2,6,4,5,3,7] => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,1,0,1,0,0,0,0] => [1,2,7,5,6,4,3] => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,0,1,0,0] => [1,2,6,4,5,7,3] => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [1,2,4,5,6,3,7] => 2
[1,0,1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,1,0,0,0] => [1,2,4,7,5,6,3] => 1
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,2,4,5,6,7,3] => 3
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,1,0,1,0,1,0,0,0] => [1,2,7,4,5,6,3] => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [1,3,4,2,5,6,7] => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,1,1,0,0,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [1,3,4,2,6,7,5] => 2
[1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,1,0,0,1,0] => [1,3,5,4,6,2,7] => 2
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,1,0,0,1,0,0,0] => [1,3,7,5,4,6,2] => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,0,1,0,1,0,0] => [1,3,5,4,6,7,2] => 3
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,1,1,1,1,0,1,0,0,0,0,0] => [1,7,6,4,5,3,2] => 0
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,0,1,0,0,0] => [1,7,4,5,3,6,2] => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [1,3,4,5,2,6,7] => 2
[1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,1,0,0] => [1,3,4,6,5,7,2] => 3
[1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,1,0,0,0,1,0] => [1,3,6,4,5,2,7] => 1
[1,0,1,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,1,0,0,0] => [1,0,1,1,0,1,1,1,0,1,0,0,0,0] => [1,3,7,5,6,4,2] => 2
[1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,0,1,0,0] => [1,3,6,4,5,7,2] => 2
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [1,3,4,5,6,2,7] => 3
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,1,0,0,0] => [1,3,4,7,5,6,2] => 2
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,1,0,0] => [1,3,4,5,6,7,2] => 4
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,1,1,0,1,0,1,0,0,0] => [1,3,7,4,5,6,2] => 1
[1,0,1,1,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,1,1,0,1,1,0,1,0,0,0,0] => [1,7,3,5,6,4,2] => 1
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,0,1,0,1,0,0,0,0] => [1,7,4,5,6,3,2] => 2
[1,1,0,0,1,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => [2,3,1,4,5,6,7] => 1
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0,1,0] => [6,5,3,4,2,1,7] => 0
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [4,2,3,5,6,7,1] => 3
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0,1,0] => [6,3,4,2,5,1,7] => 1
[1,1,1,0,0,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,1,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => [2,3,4,1,5,6,7] => 2
>>> Load all 140 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of double exceedences of a permutation.
A double exceedence is an index σ(i) such that i<σ(i)<σ(σ(i)).
A double exceedence is an index σ(i) such that i<σ(i)<σ(σ(i)).
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
The Delest-Viennot bijection β returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path (β(−1)∘γ)(D).
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
The Delest-Viennot bijection β returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path (β(−1)∘γ)(D).
Map
to non-crossing permutation
Description
Sends a Dyck path D with valley at positions {(i1,j1),…,(ik,jk)} to the unique non-crossing permutation π having descents {i1,…,ik} and whose inverse has descents {j1,…,jk}.
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to n(n−1) minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
It sends the area St000012The area of a Dyck path. to the number of inversions St000018The number of inversions of a permutation. and the major index St000027The major index of a Dyck path. to n(n−1) minus the sum of the major index St000004The major index of a permutation. and the inverse major index St000305The inverse major index of a permutation..
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!