Identifier
-
Mp00047:
Ordered trees
—to poset⟶
Posets
Mp00110: Posets —Greene-Kleitman invariant⟶ Integer partitions
Mp00042: Integer partitions —initial tableau⟶ Standard tableaux
St000734: Standard tableaux ⟶ ℤ
Values
[] => ([],1) => [1] => [[1]] => 1
[[]] => ([(0,1)],2) => [2] => [[1,2]] => 2
[[],[]] => ([(0,2),(1,2)],3) => [2,1] => [[1,2],[3]] => 2
[[[]]] => ([(0,2),(2,1)],3) => [3] => [[1,2,3]] => 3
[[],[],[]] => ([(0,3),(1,3),(2,3)],4) => [2,1,1] => [[1,2],[3],[4]] => 2
[[],[[]]] => ([(0,3),(1,2),(2,3)],4) => [3,1] => [[1,2,3],[4]] => 3
[[[]],[]] => ([(0,3),(1,2),(2,3)],4) => [3,1] => [[1,2,3],[4]] => 3
[[[],[]]] => ([(0,3),(1,3),(3,2)],4) => [3,1] => [[1,2,3],[4]] => 3
[[[[]]]] => ([(0,3),(2,1),(3,2)],4) => [4] => [[1,2,3,4]] => 4
[[],[],[],[]] => ([(0,4),(1,4),(2,4),(3,4)],5) => [2,1,1,1] => [[1,2],[3],[4],[5]] => 2
[[],[],[[]]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 3
[[],[[]],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 3
[[],[[],[]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 3
[[],[[[]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4,1] => [[1,2,3,4],[5]] => 4
[[[]],[],[]] => ([(0,4),(1,4),(2,3),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 3
[[[]],[[]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [3,2] => [[1,2,3],[4,5]] => 3
[[[],[]],[]] => ([(0,4),(1,3),(2,3),(3,4)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 3
[[[[]]],[]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [4,1] => [[1,2,3,4],[5]] => 4
[[[],[],[]]] => ([(0,4),(1,4),(2,4),(4,3)],5) => [3,1,1] => [[1,2,3],[4],[5]] => 3
[[[],[[]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [4,1] => [[1,2,3,4],[5]] => 4
[[[[]],[]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [4,1] => [[1,2,3,4],[5]] => 4
[[[[],[]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => [4,1] => [[1,2,3,4],[5]] => 4
[[[[[]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [5] => [[1,2,3,4,5]] => 5
[[],[],[],[],[]] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [2,1,1,1,1] => [[1,2],[3],[4],[5],[6]] => 2
[[],[],[],[[]]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[],[],[[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[],[],[[],[]]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[],[],[[[]]]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[],[[]],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[],[[]],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[[],[[],[]],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[],[[[]]],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[],[[],[],[]]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[],[[],[[]]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[],[[[]],[]]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[],[[[],[]]]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[],[[[[]]]]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[]],[],[],[]] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[[]],[],[[]]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[[[]],[[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[[[]],[[],[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[[[]],[[[]]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [4,2] => [[1,2,3,4],[5,6]] => 4
[[[],[]],[],[]] => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[[[]]],[],[]] => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[],[]],[[]]] => ([(0,4),(1,4),(2,3),(3,5),(4,5)],6) => [3,2,1] => [[1,2,3],[4,5],[6]] => 3
[[[[]]],[[]]] => ([(0,3),(1,4),(2,5),(3,5),(4,2)],6) => [4,2] => [[1,2,3,4],[5,6]] => 4
[[[],[],[]],[]] => ([(0,5),(1,5),(2,5),(3,4),(5,4)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[[],[[]]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[[]],[]],[]] => ([(0,5),(1,4),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[[],[]]],[]] => ([(0,5),(1,4),(2,4),(3,5),(4,3)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[[[]]]],[]] => ([(0,5),(1,4),(2,5),(3,2),(4,3)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[],[],[],[]]] => ([(0,5),(1,5),(2,5),(3,5),(5,4)],6) => [3,1,1,1] => [[1,2,3],[4],[5],[6]] => 3
[[[],[],[[]]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[],[[]],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[],[[],[]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[],[[[]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[[]],[],[]]] => ([(0,5),(1,5),(2,3),(3,5),(5,4)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[[]],[[]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [4,2] => [[1,2,3,4],[5,6]] => 4
[[[[],[]],[]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[[[]]],[]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[[],[],[]]]] => ([(0,5),(1,5),(2,5),(3,4),(5,3)],6) => [4,1,1] => [[1,2,3,4],[5],[6]] => 4
[[[[],[[]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[[[]],[]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[[[],[]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [5,1] => [[1,2,3,4,5],[6]] => 5
[[[[[[]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [6] => [[1,2,3,4,5,6]] => 6
[[],[],[],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [2,1,1,1,1,1] => [[1,2],[3],[4],[5],[6],[7]] => 2
[[],[],[],[],[[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[],[],[[]],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[],[],[[],[]]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[],[],[[[]]]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[],[[]],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[],[[]],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[[],[],[[],[]],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[],[[[]]],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[],[[],[],[]]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[],[[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[],[[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[],[[[],[]]]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[],[[[[]]]]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 5
[[],[[]],[],[],[]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[[]],[],[[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[[],[[]],[[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[[],[[]],[[],[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[[],[[]],[[[]]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[[],[[],[]],[],[]] => ([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[[[]]],[],[]] => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[],[]],[[]]] => ([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [3,2,1,1] => [[1,2,3],[4,5],[6],[7]] => 3
[[],[[[]]],[[]]] => ([(0,6),(1,3),(2,4),(3,5),(4,6),(5,6)],7) => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[[],[[],[],[]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[[],[[]]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[[]],[]],[]] => ([(0,6),(1,6),(2,5),(3,4),(4,5),(5,6)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[[],[]]],[]] => ([(0,6),(1,6),(2,5),(3,5),(4,6),(5,4)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[[[]]]],[]] => ([(0,3),(1,6),(2,6),(3,5),(4,6),(5,4)],7) => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 5
[[],[[],[],[],[]]] => ([(0,6),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => [3,1,1,1,1] => [[1,2,3],[4],[5],[6],[7]] => 3
[[],[[],[],[[]]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[],[[]],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[],[[],[]]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[],[[[]]]]] => ([(0,6),(1,5),(2,3),(3,4),(4,5),(5,6)],7) => [5,1,1] => [[1,2,3,4,5],[6],[7]] => 5
[[],[[[]],[],[]]] => ([(0,6),(1,6),(2,5),(3,4),(4,6),(6,5)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
[[],[[[]],[[]]]] => ([(0,5),(1,4),(2,3),(3,6),(4,6),(6,5)],7) => [4,2,1] => [[1,2,3,4],[5,6],[7]] => 4
[[],[[[],[]],[]]] => ([(0,4),(1,4),(2,5),(3,6),(4,6),(6,5)],7) => [4,1,1,1] => [[1,2,3,4],[5],[6],[7]] => 4
>>> Load all 214 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The last entry in the first row of a standard tableau.
Map
initial tableau
Description
Sends an integer partition to the standard tableau obtained by filling the numbers 1 through n row by row.
Map
to poset
Description
Return the poset obtained by interpreting the tree as the Hasse diagram of a graph.
Map
Greene-Kleitman invariant
Description
The Greene-Kleitman invariant of a poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
This is the partition (c1−c0,c2−c1,c3−c2,…), where ck is the maximum cardinality of a union of k chains of the poset. Equivalently, this is the conjugate of the partition (a1−a0,a2−a1,a3−a2,…), where ak is the maximum cardinality of a union of k antichains of the poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!