Loading [MathJax]/jax/output/HTML-CSS/jax.js

Identifier
Values
[1,0] => [1,0] => ([],1) => ([],1) => 0
[1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => ([],2) => 1
[1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => ([],2) => 1
[1,0,1,1,0,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => ([],3) => 1
[1,1,0,0,1,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => ([],3) => 1
[1,1,0,1,0,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => ([],3) => 1
[1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => ([],3) => 1
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 1
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,1,0,0,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => ([],4) => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => 1
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,0,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,0,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,0,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,0,1,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,0,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,1,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,0,0,0,1,1,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,0,0,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,0,1,1,0,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,0,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The Colin de Verdière graph invariant.
Map
decomposition reverse
Description
This map is recursively defined as follows.
The unique empty path of semilength 0 is sent to itself.
Let D be a Dyck path of semilength n>0 and decompose it into 1D10D2 with Dyck paths D1,D2 of respective semilengths n1 and n2 such that n1 is minimal. One then has n1+n2=n1.
Now let ˜D1 and ˜D2 be the recursively defined respective images of D1 and D2 under this map. The image of D is then defined as 1˜D20˜D1.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
This map returns the cell poset of γ(D). In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.