Identifier
Values
[(1,2)] => 0
[(1,2),(3,4)] => 0
[(1,3),(2,4)] => 0
[(1,4),(2,3)] => 1
[(1,2),(3,4),(5,6)] => 0
[(1,3),(2,4),(5,6)] => 0
[(1,4),(2,3),(5,6)] => 1
[(1,5),(2,3),(4,6)] => 1
[(1,6),(2,3),(4,5)] => 0
[(1,6),(2,4),(3,5)] => 1
[(1,5),(2,4),(3,6)] => 0
[(1,4),(2,5),(3,6)] => 0
[(1,3),(2,5),(4,6)] => 0
[(1,2),(3,5),(4,6)] => 0
[(1,2),(3,6),(4,5)] => 1
[(1,3),(2,6),(4,5)] => 1
[(1,4),(2,6),(3,5)] => 0
[(1,5),(2,6),(3,4)] => 0
[(1,6),(2,5),(3,4)] => 1
[(1,2),(3,4),(5,6),(7,8)] => 0
[(1,3),(2,4),(5,6),(7,8)] => 0
[(1,4),(2,3),(5,6),(7,8)] => 1
[(1,5),(2,3),(4,6),(7,8)] => 1
[(1,6),(2,3),(4,5),(7,8)] => 0
[(1,7),(2,3),(4,5),(6,8)] => 0
[(1,8),(2,3),(4,5),(6,7)] => 1
[(1,8),(2,4),(3,5),(6,7)] => 0
[(1,7),(2,4),(3,5),(6,8)] => 1
[(1,6),(2,4),(3,5),(7,8)] => 1
[(1,5),(2,4),(3,6),(7,8)] => 0
[(1,4),(2,5),(3,6),(7,8)] => 0
[(1,3),(2,5),(4,6),(7,8)] => 0
[(1,2),(3,5),(4,6),(7,8)] => 0
[(1,2),(3,6),(4,5),(7,8)] => 1
[(1,3),(2,6),(4,5),(7,8)] => 1
[(1,4),(2,6),(3,5),(7,8)] => 0
[(1,5),(2,6),(3,4),(7,8)] => 0
[(1,6),(2,5),(3,4),(7,8)] => 1
[(1,7),(2,5),(3,4),(6,8)] => 1
[(1,8),(2,5),(3,4),(6,7)] => 0
[(1,8),(2,6),(3,4),(5,7)] => 1
[(1,7),(2,6),(3,4),(5,8)] => 2
[(1,6),(2,7),(3,4),(5,8)] => 2
[(1,5),(2,7),(3,4),(6,8)] => 0
[(1,4),(2,7),(3,5),(6,8)] => 0
[(1,3),(2,7),(4,5),(6,8)] => 1
[(1,2),(3,7),(4,5),(6,8)] => 1
[(1,2),(3,8),(4,5),(6,7)] => 0
[(1,3),(2,8),(4,5),(6,7)] => 0
[(1,4),(2,8),(3,5),(6,7)] => 1
[(1,5),(2,8),(3,4),(6,7)] => 1
[(1,6),(2,8),(3,4),(5,7)] => 0
[(1,7),(2,8),(3,4),(5,6)] => 0
[(1,8),(2,7),(3,4),(5,6)] => 1
[(1,8),(2,7),(3,5),(4,6)] => 1
[(1,7),(2,8),(3,5),(4,6)] => 0
[(1,6),(2,8),(3,5),(4,7)] => 0
[(1,5),(2,8),(3,6),(4,7)] => 2
[(1,4),(2,8),(3,6),(5,7)] => 2
[(1,3),(2,8),(4,6),(5,7)] => 1
[(1,2),(3,8),(4,6),(5,7)] => 1
[(1,2),(3,7),(4,6),(5,8)] => 0
[(1,3),(2,7),(4,6),(5,8)] => 0
[(1,4),(2,7),(3,6),(5,8)] => 1
[(1,5),(2,7),(3,6),(4,8)] => 1
[(1,6),(2,7),(3,5),(4,8)] => 2
[(1,7),(2,6),(3,5),(4,8)] => 2
[(1,8),(2,6),(3,5),(4,7)] => 1
[(1,8),(2,5),(3,6),(4,7)] => 1
[(1,7),(2,5),(3,6),(4,8)] => 2
[(1,6),(2,5),(3,7),(4,8)] => 1
[(1,5),(2,6),(3,7),(4,8)] => 0
[(1,4),(2,6),(3,7),(5,8)] => 0
[(1,3),(2,6),(4,7),(5,8)] => 0
[(1,2),(3,6),(4,7),(5,8)] => 0
[(1,2),(3,5),(4,7),(6,8)] => 0
[(1,3),(2,5),(4,7),(6,8)] => 0
[(1,4),(2,5),(3,7),(6,8)] => 0
[(1,5),(2,4),(3,7),(6,8)] => 0
[(1,6),(2,4),(3,7),(5,8)] => 1
[(1,7),(2,4),(3,6),(5,8)] => 2
[(1,8),(2,4),(3,6),(5,7)] => 1
[(1,8),(2,3),(4,6),(5,7)] => 0
[(1,7),(2,3),(4,6),(5,8)] => 1
[(1,6),(2,3),(4,7),(5,8)] => 1
[(1,5),(2,3),(4,7),(6,8)] => 1
[(1,4),(2,3),(5,7),(6,8)] => 1
[(1,3),(2,4),(5,7),(6,8)] => 0
[(1,2),(3,4),(5,7),(6,8)] => 0
[(1,2),(3,4),(5,8),(6,7)] => 1
[(1,3),(2,4),(5,8),(6,7)] => 1
[(1,4),(2,3),(5,8),(6,7)] => 0
[(1,5),(2,3),(4,8),(6,7)] => 0
[(1,6),(2,3),(4,8),(5,7)] => 1
[(1,7),(2,3),(4,8),(5,6)] => 1
[(1,8),(2,3),(4,7),(5,6)] => 0
[(1,8),(2,4),(3,7),(5,6)] => 1
[(1,7),(2,4),(3,8),(5,6)] => 0
[(1,6),(2,4),(3,8),(5,7)] => 0
[(1,5),(2,4),(3,8),(6,7)] => 1
[(1,4),(2,5),(3,8),(6,7)] => 1
>>> Load all 1200 entries. <<<[(1,3),(2,5),(4,8),(6,7)] => 1
[(1,2),(3,5),(4,8),(6,7)] => 1
[(1,2),(3,6),(4,8),(5,7)] => 0
[(1,3),(2,6),(4,8),(5,7)] => 0
[(1,4),(2,6),(3,8),(5,7)] => 1
[(1,5),(2,6),(3,8),(4,7)] => 1
[(1,6),(2,5),(3,8),(4,7)] => 0
[(1,7),(2,5),(3,8),(4,6)] => 0
[(1,8),(2,5),(3,7),(4,6)] => 1
[(1,8),(2,6),(3,7),(4,5)] => 2
[(1,7),(2,6),(3,8),(4,5)] => 3
[(1,6),(2,7),(3,8),(4,5)] => 1
[(1,5),(2,7),(3,8),(4,6)] => 2
[(1,4),(2,7),(3,8),(5,6)] => 2
[(1,3),(2,7),(4,8),(5,6)] => 0
[(1,2),(3,7),(4,8),(5,6)] => 0
[(1,2),(3,8),(4,7),(5,6)] => 1
[(1,3),(2,8),(4,7),(5,6)] => 1
[(1,4),(2,8),(3,7),(5,6)] => 2
[(1,5),(2,8),(3,7),(4,6)] => 2
[(1,6),(2,8),(3,7),(4,5)] => 3
[(1,7),(2,8),(3,6),(4,5)] => 1
[(1,8),(2,7),(3,6),(4,5)] => 0
[(1,2),(3,4),(5,6),(7,8),(9,10)] => 0
[(1,3),(2,4),(5,6),(7,8),(9,10)] => 0
[(1,4),(2,3),(5,6),(7,8),(9,10)] => 1
[(1,5),(2,3),(4,6),(7,8),(9,10)] => 1
[(1,6),(2,3),(4,5),(7,8),(9,10)] => 0
[(1,7),(2,3),(4,5),(6,8),(9,10)] => 0
[(1,8),(2,3),(4,5),(6,7),(9,10)] => 1
[(1,9),(2,3),(4,5),(6,7),(8,10)] => 1
[(1,10),(2,3),(4,5),(6,7),(8,9)] => 0
[(1,10),(2,4),(3,5),(6,7),(8,9)] => 1
[(1,9),(2,4),(3,5),(6,7),(8,10)] => 0
[(1,8),(2,4),(3,5),(6,7),(9,10)] => 0
[(1,7),(2,4),(3,5),(6,8),(9,10)] => 1
[(1,6),(2,4),(3,5),(7,8),(9,10)] => 1
[(1,5),(2,4),(3,6),(7,8),(9,10)] => 0
[(1,4),(2,5),(3,6),(7,8),(9,10)] => 0
[(1,3),(2,5),(4,6),(7,8),(9,10)] => 0
[(1,2),(3,5),(4,6),(7,8),(9,10)] => 0
[(1,2),(3,6),(4,5),(7,8),(9,10)] => 1
[(1,3),(2,6),(4,5),(7,8),(9,10)] => 1
[(1,4),(2,6),(3,5),(7,8),(9,10)] => 0
[(1,5),(2,6),(3,4),(7,8),(9,10)] => 0
[(1,6),(2,5),(3,4),(7,8),(9,10)] => 1
[(1,7),(2,5),(3,4),(6,8),(9,10)] => 1
[(1,8),(2,5),(3,4),(6,7),(9,10)] => 0
[(1,9),(2,5),(3,4),(6,7),(8,10)] => 0
[(1,10),(2,5),(3,4),(6,7),(8,9)] => 1
[(1,10),(2,6),(3,4),(5,7),(8,9)] => 0
[(1,9),(2,6),(3,4),(5,7),(8,10)] => 1
[(1,8),(2,6),(3,4),(5,7),(9,10)] => 1
[(1,7),(2,6),(3,4),(5,8),(9,10)] => 2
[(1,6),(2,7),(3,4),(5,8),(9,10)] => 2
[(1,5),(2,7),(3,4),(6,8),(9,10)] => 0
[(1,4),(2,7),(3,5),(6,8),(9,10)] => 0
[(1,3),(2,7),(4,5),(6,8),(9,10)] => 1
[(1,2),(3,7),(4,5),(6,8),(9,10)] => 1
[(1,2),(3,8),(4,5),(6,7),(9,10)] => 0
[(1,3),(2,8),(4,5),(6,7),(9,10)] => 0
[(1,4),(2,8),(3,5),(6,7),(9,10)] => 1
[(1,5),(2,8),(3,4),(6,7),(9,10)] => 1
[(1,6),(2,8),(3,4),(5,7),(9,10)] => 0
[(1,7),(2,8),(3,4),(5,6),(9,10)] => 0
[(1,8),(2,7),(3,4),(5,6),(9,10)] => 1
[(1,9),(2,7),(3,4),(5,6),(8,10)] => 1
[(1,10),(2,7),(3,4),(5,6),(8,9)] => 0
[(1,10),(2,8),(3,4),(5,6),(7,9)] => 1
[(1,9),(2,8),(3,4),(5,6),(7,10)] => 4
[(1,8),(2,9),(3,4),(5,6),(7,10)] => 4
[(1,7),(2,9),(3,4),(5,6),(8,10)] => 0
[(1,6),(2,9),(3,4),(5,7),(8,10)] => 0
[(1,5),(2,9),(3,4),(6,7),(8,10)] => 1
[(1,4),(2,9),(3,5),(6,7),(8,10)] => 1
[(1,3),(2,9),(4,5),(6,7),(8,10)] => 0
[(1,2),(3,9),(4,5),(6,7),(8,10)] => 0
[(1,2),(3,10),(4,5),(6,7),(8,9)] => 1
[(1,3),(2,10),(4,5),(6,7),(8,9)] => 1
[(1,4),(2,10),(3,5),(6,7),(8,9)] => 0
[(1,5),(2,10),(3,4),(6,7),(8,9)] => 0
[(1,6),(2,10),(3,4),(5,7),(8,9)] => 1
[(1,7),(2,10),(3,4),(5,6),(8,9)] => 1
[(1,8),(2,10),(3,4),(5,6),(7,9)] => 0
[(1,9),(2,10),(3,4),(5,6),(7,8)] => 0
[(1,10),(2,9),(3,4),(5,6),(7,8)] => 1
[(1,10),(2,9),(3,5),(4,6),(7,8)] => 1
[(1,9),(2,10),(3,5),(4,6),(7,8)] => 0
[(1,8),(2,10),(3,5),(4,6),(7,9)] => 0
[(1,7),(2,10),(3,5),(4,6),(8,9)] => 1
[(1,6),(2,10),(3,5),(4,7),(8,9)] => 1
[(1,5),(2,10),(3,6),(4,7),(8,9)] => 3
[(1,4),(2,10),(3,6),(5,7),(8,9)] => 3
[(1,3),(2,10),(4,6),(5,7),(8,9)] => 0
[(1,2),(3,10),(4,6),(5,7),(8,9)] => 0
[(1,2),(3,9),(4,6),(5,7),(8,10)] => 1
[(1,3),(2,9),(4,6),(5,7),(8,10)] => 1
[(1,4),(2,9),(3,6),(5,7),(8,10)] => 2
[(1,5),(2,9),(3,6),(4,7),(8,10)] => 2
[(1,6),(2,9),(3,5),(4,7),(8,10)] => 0
[(1,7),(2,9),(3,5),(4,6),(8,10)] => 0
[(1,8),(2,9),(3,5),(4,6),(7,10)] => 3
[(1,9),(2,8),(3,5),(4,6),(7,10)] => 2
[(1,10),(2,8),(3,5),(4,6),(7,9)] => 1
[(1,10),(2,7),(3,5),(4,6),(8,9)] => 0
[(1,9),(2,7),(3,5),(4,6),(8,10)] => 1
[(1,8),(2,7),(3,5),(4,6),(9,10)] => 1
[(1,7),(2,8),(3,5),(4,6),(9,10)] => 0
[(1,6),(2,8),(3,5),(4,7),(9,10)] => 0
[(1,5),(2,8),(3,6),(4,7),(9,10)] => 2
[(1,4),(2,8),(3,6),(5,7),(9,10)] => 2
[(1,3),(2,8),(4,6),(5,7),(9,10)] => 1
[(1,2),(3,8),(4,6),(5,7),(9,10)] => 1
[(1,2),(3,7),(4,6),(5,8),(9,10)] => 0
[(1,3),(2,7),(4,6),(5,8),(9,10)] => 0
[(1,4),(2,7),(3,6),(5,8),(9,10)] => 1
[(1,5),(2,7),(3,6),(4,8),(9,10)] => 1
[(1,6),(2,7),(3,5),(4,8),(9,10)] => 2
[(1,7),(2,6),(3,5),(4,8),(9,10)] => 2
[(1,8),(2,6),(3,5),(4,7),(9,10)] => 1
[(1,9),(2,6),(3,5),(4,7),(8,10)] => 1
[(1,10),(2,6),(3,5),(4,7),(8,9)] => 0
[(1,10),(2,5),(3,6),(4,7),(8,9)] => 0
[(1,9),(2,5),(3,6),(4,7),(8,10)] => 1
[(1,8),(2,5),(3,6),(4,7),(9,10)] => 1
[(1,7),(2,5),(3,6),(4,8),(9,10)] => 2
[(1,6),(2,5),(3,7),(4,8),(9,10)] => 1
[(1,5),(2,6),(3,7),(4,8),(9,10)] => 0
[(1,4),(2,6),(3,7),(5,8),(9,10)] => 0
[(1,3),(2,6),(4,7),(5,8),(9,10)] => 0
[(1,2),(3,6),(4,7),(5,8),(9,10)] => 0
[(1,2),(3,5),(4,7),(6,8),(9,10)] => 0
[(1,3),(2,5),(4,7),(6,8),(9,10)] => 0
[(1,4),(2,5),(3,7),(6,8),(9,10)] => 0
[(1,5),(2,4),(3,7),(6,8),(9,10)] => 0
[(1,6),(2,4),(3,7),(5,8),(9,10)] => 1
[(1,7),(2,4),(3,6),(5,8),(9,10)] => 2
[(1,8),(2,4),(3,6),(5,7),(9,10)] => 1
[(1,9),(2,4),(3,6),(5,7),(8,10)] => 1
[(1,10),(2,4),(3,6),(5,7),(8,9)] => 0
[(1,10),(2,3),(4,6),(5,7),(8,9)] => 1
[(1,9),(2,3),(4,6),(5,7),(8,10)] => 0
[(1,8),(2,3),(4,6),(5,7),(9,10)] => 0
[(1,7),(2,3),(4,6),(5,8),(9,10)] => 1
[(1,6),(2,3),(4,7),(5,8),(9,10)] => 1
[(1,5),(2,3),(4,7),(6,8),(9,10)] => 1
[(1,4),(2,3),(5,7),(6,8),(9,10)] => 1
[(1,3),(2,4),(5,7),(6,8),(9,10)] => 0
[(1,2),(3,4),(5,7),(6,8),(9,10)] => 0
[(1,2),(3,4),(5,8),(6,7),(9,10)] => 1
[(1,3),(2,4),(5,8),(6,7),(9,10)] => 1
[(1,4),(2,3),(5,8),(6,7),(9,10)] => 0
[(1,5),(2,3),(4,8),(6,7),(9,10)] => 0
[(1,6),(2,3),(4,8),(5,7),(9,10)] => 1
[(1,7),(2,3),(4,8),(5,6),(9,10)] => 1
[(1,8),(2,3),(4,7),(5,6),(9,10)] => 0
[(1,9),(2,3),(4,7),(5,6),(8,10)] => 0
[(1,10),(2,3),(4,7),(5,6),(8,9)] => 1
[(1,10),(2,4),(3,7),(5,6),(8,9)] => 0
[(1,9),(2,4),(3,7),(5,6),(8,10)] => 1
[(1,8),(2,4),(3,7),(5,6),(9,10)] => 1
[(1,7),(2,4),(3,8),(5,6),(9,10)] => 0
[(1,6),(2,4),(3,8),(5,7),(9,10)] => 0
[(1,5),(2,4),(3,8),(6,7),(9,10)] => 1
[(1,4),(2,5),(3,8),(6,7),(9,10)] => 1
[(1,3),(2,5),(4,8),(6,7),(9,10)] => 1
[(1,2),(3,5),(4,8),(6,7),(9,10)] => 1
[(1,2),(3,6),(4,8),(5,7),(9,10)] => 0
[(1,3),(2,6),(4,8),(5,7),(9,10)] => 0
[(1,4),(2,6),(3,8),(5,7),(9,10)] => 1
[(1,5),(2,6),(3,8),(4,7),(9,10)] => 1
[(1,6),(2,5),(3,8),(4,7),(9,10)] => 0
[(1,7),(2,5),(3,8),(4,6),(9,10)] => 0
[(1,8),(2,5),(3,7),(4,6),(9,10)] => 1
[(1,9),(2,5),(3,7),(4,6),(8,10)] => 1
[(1,10),(2,5),(3,7),(4,6),(8,9)] => 0
[(1,10),(2,6),(3,7),(4,5),(8,9)] => 3
[(1,9),(2,6),(3,7),(4,5),(8,10)] => 2
[(1,8),(2,6),(3,7),(4,5),(9,10)] => 2
[(1,7),(2,6),(3,8),(4,5),(9,10)] => 3
[(1,6),(2,7),(3,8),(4,5),(9,10)] => 1
[(1,5),(2,7),(3,8),(4,6),(9,10)] => 2
[(1,4),(2,7),(3,8),(5,6),(9,10)] => 2
[(1,3),(2,7),(4,8),(5,6),(9,10)] => 0
[(1,2),(3,7),(4,8),(5,6),(9,10)] => 0
[(1,2),(3,8),(4,7),(5,6),(9,10)] => 1
[(1,3),(2,8),(4,7),(5,6),(9,10)] => 1
[(1,4),(2,8),(3,7),(5,6),(9,10)] => 2
[(1,5),(2,8),(3,7),(4,6),(9,10)] => 2
[(1,6),(2,8),(3,7),(4,5),(9,10)] => 3
[(1,7),(2,8),(3,6),(4,5),(9,10)] => 1
[(1,8),(2,7),(3,6),(4,5),(9,10)] => 0
[(1,9),(2,7),(3,6),(4,5),(8,10)] => 0
[(1,10),(2,7),(3,6),(4,5),(8,9)] => 1
[(1,10),(2,8),(3,6),(4,5),(7,9)] => 0
[(1,9),(2,8),(3,6),(4,5),(7,10)] => 3
[(1,8),(2,9),(3,6),(4,5),(7,10)] => 2
[(1,7),(2,9),(3,6),(4,5),(8,10)] => 1
[(1,6),(2,9),(3,7),(4,5),(8,10)] => 3
[(1,5),(2,9),(3,7),(4,6),(8,10)] => 2
[(1,4),(2,9),(3,7),(5,6),(8,10)] => 2
[(1,3),(2,9),(4,7),(5,6),(8,10)] => 1
[(1,2),(3,9),(4,7),(5,6),(8,10)] => 1
[(1,2),(3,10),(4,7),(5,6),(8,9)] => 0
[(1,3),(2,10),(4,7),(5,6),(8,9)] => 0
[(1,4),(2,10),(3,7),(5,6),(8,9)] => 3
[(1,5),(2,10),(3,7),(4,6),(8,9)] => 3
[(1,6),(2,10),(3,7),(4,5),(8,9)] => 2
[(1,7),(2,10),(3,6),(4,5),(8,9)] => 0
[(1,8),(2,10),(3,6),(4,5),(7,9)] => 1
[(1,9),(2,10),(3,6),(4,5),(7,8)] => 1
[(1,10),(2,9),(3,6),(4,5),(7,8)] => 0
[(1,10),(2,9),(3,7),(4,5),(6,8)] => 0
[(1,9),(2,10),(3,7),(4,5),(6,8)] => 1
[(1,8),(2,10),(3,7),(4,5),(6,9)] => 1
[(1,7),(2,10),(3,8),(4,5),(6,9)] => 4
[(1,6),(2,10),(3,8),(4,5),(7,9)] => 2
[(1,5),(2,10),(3,8),(4,6),(7,9)] => 3
[(1,4),(2,10),(3,8),(5,6),(7,9)] => 3
[(1,3),(2,10),(4,8),(5,6),(7,9)] => 1
[(1,2),(3,10),(4,8),(5,6),(7,9)] => 1
[(1,2),(3,9),(4,8),(5,6),(7,10)] => 2
[(1,3),(2,9),(4,8),(5,6),(7,10)] => 2
[(1,4),(2,9),(3,8),(5,6),(7,10)] => 1
[(1,5),(2,9),(3,8),(4,6),(7,10)] => 1
[(1,6),(2,9),(3,8),(4,5),(7,10)] => 2
[(1,7),(2,9),(3,8),(4,5),(6,10)] => 2
[(1,8),(2,9),(3,7),(4,5),(6,10)] => 2
[(1,9),(2,8),(3,7),(4,5),(6,10)] => 3
[(1,10),(2,8),(3,7),(4,5),(6,9)] => 0
[(1,10),(2,7),(3,8),(4,5),(6,9)] => 2
[(1,9),(2,7),(3,8),(4,5),(6,10)] => 4
[(1,8),(2,7),(3,9),(4,5),(6,10)] => 2
[(1,7),(2,8),(3,9),(4,5),(6,10)] => 2
[(1,6),(2,8),(3,9),(4,5),(7,10)] => 2
[(1,5),(2,8),(3,9),(4,6),(7,10)] => 1
[(1,4),(2,8),(3,9),(5,6),(7,10)] => 1
[(1,3),(2,8),(4,9),(5,6),(7,10)] => 2
[(1,2),(3,8),(4,9),(5,6),(7,10)] => 2
[(1,2),(3,7),(4,9),(5,6),(8,10)] => 0
[(1,3),(2,7),(4,9),(5,6),(8,10)] => 0
[(1,4),(2,7),(3,9),(5,6),(8,10)] => 2
[(1,5),(2,7),(3,9),(4,6),(8,10)] => 2
[(1,6),(2,7),(3,9),(4,5),(8,10)] => 1
[(1,7),(2,6),(3,9),(4,5),(8,10)] => 3
[(1,8),(2,6),(3,9),(4,5),(7,10)] => 2
[(1,9),(2,6),(3,8),(4,5),(7,10)] => 4
[(1,10),(2,6),(3,8),(4,5),(7,9)] => 2
[(1,10),(2,5),(3,8),(4,6),(7,9)] => 1
[(1,9),(2,5),(3,8),(4,6),(7,10)] => 2
[(1,8),(2,5),(3,9),(4,6),(7,10)] => 3
[(1,7),(2,5),(3,9),(4,6),(8,10)] => 0
[(1,6),(2,5),(3,9),(4,7),(8,10)] => 0
[(1,5),(2,6),(3,9),(4,7),(8,10)] => 1
[(1,4),(2,6),(3,9),(5,7),(8,10)] => 1
[(1,3),(2,6),(4,9),(5,7),(8,10)] => 0
[(1,2),(3,6),(4,9),(5,7),(8,10)] => 0
[(1,2),(3,5),(4,9),(6,7),(8,10)] => 1
[(1,3),(2,5),(4,9),(6,7),(8,10)] => 1
[(1,4),(2,5),(3,9),(6,7),(8,10)] => 1
[(1,5),(2,4),(3,9),(6,7),(8,10)] => 1
[(1,6),(2,4),(3,9),(5,7),(8,10)] => 0
[(1,7),(2,4),(3,9),(5,6),(8,10)] => 0
[(1,8),(2,4),(3,9),(5,6),(7,10)] => 3
[(1,9),(2,4),(3,8),(5,6),(7,10)] => 3
[(1,10),(2,4),(3,8),(5,6),(7,9)] => 1
[(1,10),(2,3),(4,8),(5,6),(7,9)] => 0
[(1,9),(2,3),(4,8),(5,6),(7,10)] => 3
[(1,8),(2,3),(4,9),(5,6),(7,10)] => 3
[(1,7),(2,3),(4,9),(5,6),(8,10)] => 1
[(1,6),(2,3),(4,9),(5,7),(8,10)] => 1
[(1,5),(2,3),(4,9),(6,7),(8,10)] => 0
[(1,4),(2,3),(5,9),(6,7),(8,10)] => 0
[(1,3),(2,4),(5,9),(6,7),(8,10)] => 1
[(1,2),(3,4),(5,9),(6,7),(8,10)] => 1
[(1,2),(3,4),(5,10),(6,7),(8,9)] => 0
[(1,3),(2,4),(5,10),(6,7),(8,9)] => 0
[(1,4),(2,3),(5,10),(6,7),(8,9)] => 1
[(1,5),(2,3),(4,10),(6,7),(8,9)] => 1
[(1,6),(2,3),(4,10),(5,7),(8,9)] => 0
[(1,7),(2,3),(4,10),(5,6),(8,9)] => 0
[(1,8),(2,3),(4,10),(5,6),(7,9)] => 1
[(1,9),(2,3),(4,10),(5,6),(7,8)] => 1
[(1,10),(2,3),(4,9),(5,6),(7,8)] => 0
[(1,10),(2,4),(3,9),(5,6),(7,8)] => 1
[(1,9),(2,4),(3,10),(5,6),(7,8)] => 0
[(1,8),(2,4),(3,10),(5,6),(7,9)] => 0
[(1,7),(2,4),(3,10),(5,6),(8,9)] => 1
[(1,6),(2,4),(3,10),(5,7),(8,9)] => 1
[(1,5),(2,4),(3,10),(6,7),(8,9)] => 0
[(1,4),(2,5),(3,10),(6,7),(8,9)] => 0
[(1,3),(2,5),(4,10),(6,7),(8,9)] => 0
[(1,2),(3,5),(4,10),(6,7),(8,9)] => 0
[(1,2),(3,6),(4,10),(5,7),(8,9)] => 1
[(1,3),(2,6),(4,10),(5,7),(8,9)] => 1
[(1,4),(2,6),(3,10),(5,7),(8,9)] => 0
[(1,5),(2,6),(3,10),(4,7),(8,9)] => 0
[(1,6),(2,5),(3,10),(4,7),(8,9)] => 1
[(1,7),(2,5),(3,10),(4,6),(8,9)] => 1
[(1,8),(2,5),(3,10),(4,6),(7,9)] => 0
[(1,9),(2,5),(3,10),(4,6),(7,8)] => 0
[(1,10),(2,5),(3,9),(4,6),(7,8)] => 1
[(1,10),(2,6),(3,9),(4,5),(7,8)] => 2
[(1,9),(2,6),(3,10),(4,5),(7,8)] => 3
[(1,8),(2,6),(3,10),(4,5),(7,9)] => 3
[(1,7),(2,6),(3,10),(4,5),(8,9)] => 2
[(1,6),(2,7),(3,10),(4,5),(8,9)] => 0
[(1,5),(2,7),(3,10),(4,6),(8,9)] => 3
[(1,4),(2,7),(3,10),(5,6),(8,9)] => 3
[(1,3),(2,7),(4,10),(5,6),(8,9)] => 1
[(1,2),(3,7),(4,10),(5,6),(8,9)] => 1
[(1,2),(3,8),(4,10),(5,6),(7,9)] => 0
[(1,3),(2,8),(4,10),(5,6),(7,9)] => 0
[(1,4),(2,8),(3,10),(5,6),(7,9)] => 3
[(1,5),(2,8),(3,10),(4,6),(7,9)] => 3
[(1,6),(2,8),(3,10),(4,5),(7,9)] => 2
[(1,7),(2,8),(3,10),(4,5),(6,9)] => 2
[(1,8),(2,7),(3,10),(4,5),(6,9)] => 1
[(1,9),(2,7),(3,10),(4,5),(6,8)] => 1
[(1,10),(2,7),(3,9),(4,5),(6,8)] => 0
[(1,10),(2,8),(3,9),(4,5),(6,7)] => 1
[(1,9),(2,8),(3,10),(4,5),(6,7)] => 0
[(1,8),(2,9),(3,10),(4,5),(6,7)] => 0
[(1,7),(2,9),(3,10),(4,5),(6,8)] => 4
[(1,6),(2,9),(3,10),(4,5),(7,8)] => 2
[(1,5),(2,9),(3,10),(4,6),(7,8)] => 4
[(1,4),(2,9),(3,10),(5,6),(7,8)] => 4
[(1,3),(2,9),(4,10),(5,6),(7,8)] => 0
[(1,2),(3,9),(4,10),(5,6),(7,8)] => 0
[(1,2),(3,10),(4,9),(5,6),(7,8)] => 1
[(1,3),(2,10),(4,9),(5,6),(7,8)] => 1
[(1,4),(2,10),(3,9),(5,6),(7,8)] => 4
[(1,5),(2,10),(3,9),(4,6),(7,8)] => 4
[(1,6),(2,10),(3,9),(4,5),(7,8)] => 3
[(1,7),(2,10),(3,9),(4,5),(6,8)] => 4
[(1,8),(2,10),(3,9),(4,5),(6,7)] => 0
[(1,9),(2,10),(3,8),(4,5),(6,7)] => 0
[(1,10),(2,9),(3,8),(4,5),(6,7)] => 1
[(1,10),(2,9),(3,8),(4,6),(5,7)] => 0
[(1,9),(2,10),(3,8),(4,6),(5,7)] => 1
[(1,8),(2,10),(3,9),(4,6),(5,7)] => 1
[(1,7),(2,10),(3,9),(4,6),(5,8)] => 2
[(1,6),(2,10),(3,9),(4,7),(5,8)] => 2
[(1,5),(2,10),(3,9),(4,7),(6,8)] => 2
[(1,4),(2,10),(3,9),(5,7),(6,8)] => 2
[(1,3),(2,10),(4,9),(5,7),(6,8)] => 1
[(1,2),(3,10),(4,9),(5,7),(6,8)] => 1
[(1,2),(3,9),(4,10),(5,7),(6,8)] => 0
[(1,3),(2,9),(4,10),(5,7),(6,8)] => 0
[(1,4),(2,9),(3,10),(5,7),(6,8)] => 3
[(1,5),(2,9),(3,10),(4,7),(6,8)] => 3
[(1,6),(2,9),(3,10),(4,7),(5,8)] => 2
[(1,7),(2,9),(3,10),(4,6),(5,8)] => 3
[(1,8),(2,9),(3,10),(4,6),(5,7)] => 1
[(1,9),(2,8),(3,10),(4,6),(5,7)] => 1
[(1,10),(2,8),(3,9),(4,6),(5,7)] => 0
[(1,10),(2,7),(3,9),(4,6),(5,8)] => 3
[(1,9),(2,7),(3,10),(4,6),(5,8)] => 0
[(1,8),(2,7),(3,10),(4,6),(5,9)] => 0
[(1,7),(2,8),(3,10),(4,6),(5,9)] => 1
[(1,6),(2,8),(3,10),(4,7),(5,9)] => 1
[(1,5),(2,8),(3,10),(4,7),(6,9)] => 3
[(1,4),(2,8),(3,10),(5,7),(6,9)] => 3
[(1,3),(2,8),(4,10),(5,7),(6,9)] => 0
[(1,2),(3,8),(4,10),(5,7),(6,9)] => 0
[(1,2),(3,7),(4,10),(5,8),(6,9)] => 2
[(1,3),(2,7),(4,10),(5,8),(6,9)] => 2
[(1,4),(2,7),(3,10),(5,8),(6,9)] => 2
[(1,5),(2,7),(3,10),(4,8),(6,9)] => 2
[(1,6),(2,7),(3,10),(4,8),(5,9)] => 0
[(1,7),(2,6),(3,10),(4,8),(5,9)] => 0
[(1,8),(2,6),(3,10),(4,7),(5,9)] => 0
[(1,9),(2,6),(3,10),(4,7),(5,8)] => 3
[(1,10),(2,6),(3,9),(4,7),(5,8)] => 3
[(1,10),(2,5),(3,9),(4,7),(6,8)] => 1
[(1,9),(2,5),(3,10),(4,7),(6,8)] => 0
[(1,8),(2,5),(3,10),(4,7),(6,9)] => 0
[(1,7),(2,5),(3,10),(4,8),(6,9)] => 0
[(1,6),(2,5),(3,10),(4,8),(7,9)] => 0
[(1,5),(2,6),(3,10),(4,8),(7,9)] => 1
[(1,4),(2,6),(3,10),(5,8),(7,9)] => 1
[(1,3),(2,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,6),(4,10),(5,8),(7,9)] => 2
[(1,2),(3,5),(4,10),(6,8),(7,9)] => 1
[(1,3),(2,5),(4,10),(6,8),(7,9)] => 1
[(1,4),(2,5),(3,10),(6,8),(7,9)] => 1
[(1,5),(2,4),(3,10),(6,8),(7,9)] => 1
[(1,6),(2,4),(3,10),(5,8),(7,9)] => 0
[(1,7),(2,4),(3,10),(5,8),(6,9)] => 0
[(1,8),(2,4),(3,10),(5,7),(6,9)] => 0
[(1,9),(2,4),(3,10),(5,7),(6,8)] => 0
[(1,10),(2,4),(3,9),(5,7),(6,8)] => 1
[(1,10),(2,3),(4,9),(5,7),(6,8)] => 0
[(1,9),(2,3),(4,10),(5,7),(6,8)] => 1
[(1,8),(2,3),(4,10),(5,7),(6,9)] => 1
[(1,7),(2,3),(4,10),(5,8),(6,9)] => 3
[(1,6),(2,3),(4,10),(5,8),(7,9)] => 3
[(1,5),(2,3),(4,10),(6,8),(7,9)] => 0
[(1,4),(2,3),(5,10),(6,8),(7,9)] => 0
[(1,3),(2,4),(5,10),(6,8),(7,9)] => 1
[(1,2),(3,4),(5,10),(6,8),(7,9)] => 1
[(1,2),(3,4),(5,9),(6,8),(7,10)] => 0
[(1,3),(2,4),(5,9),(6,8),(7,10)] => 0
[(1,4),(2,3),(5,9),(6,8),(7,10)] => 1
[(1,5),(2,3),(4,9),(6,8),(7,10)] => 1
[(1,6),(2,3),(4,9),(5,8),(7,10)] => 0
[(1,7),(2,3),(4,9),(5,8),(6,10)] => 0
[(1,8),(2,3),(4,9),(5,7),(6,10)] => 3
[(1,9),(2,3),(4,8),(5,7),(6,10)] => 3
[(1,10),(2,3),(4,8),(5,7),(6,9)] => 0
[(1,10),(2,4),(3,8),(5,7),(6,9)] => 1
[(1,9),(2,4),(3,8),(5,7),(6,10)] => 3
[(1,8),(2,4),(3,9),(5,7),(6,10)] => 3
[(1,7),(2,4),(3,9),(5,8),(6,10)] => 1
[(1,6),(2,4),(3,9),(5,8),(7,10)] => 1
[(1,5),(2,4),(3,9),(6,8),(7,10)] => 0
[(1,4),(2,5),(3,9),(6,8),(7,10)] => 0
[(1,3),(2,5),(4,9),(6,8),(7,10)] => 0
[(1,2),(3,5),(4,9),(6,8),(7,10)] => 0
[(1,2),(3,6),(4,9),(5,8),(7,10)] => 1
[(1,3),(2,6),(4,9),(5,8),(7,10)] => 1
[(1,4),(2,6),(3,9),(5,8),(7,10)] => 0
[(1,5),(2,6),(3,9),(4,8),(7,10)] => 0
[(1,6),(2,5),(3,9),(4,8),(7,10)] => 1
[(1,7),(2,5),(3,9),(4,8),(6,10)] => 1
[(1,8),(2,5),(3,9),(4,7),(6,10)] => 3
[(1,9),(2,5),(3,8),(4,7),(6,10)] => 2
[(1,10),(2,5),(3,8),(4,7),(6,9)] => 1
[(1,10),(2,6),(3,8),(4,7),(5,9)] => 2
[(1,9),(2,6),(3,8),(4,7),(5,10)] => 2
[(1,8),(2,6),(3,9),(4,7),(5,10)] => 1
[(1,7),(2,6),(3,9),(4,8),(5,10)] => 0
[(1,6),(2,7),(3,9),(4,8),(5,10)] => 0
[(1,5),(2,7),(3,9),(4,8),(6,10)] => 0
[(1,4),(2,7),(3,9),(5,8),(6,10)] => 0
[(1,3),(2,7),(4,9),(5,8),(6,10)] => 1
[(1,2),(3,7),(4,9),(5,8),(6,10)] => 1
[(1,2),(3,8),(4,9),(5,7),(6,10)] => 2
[(1,3),(2,8),(4,9),(5,7),(6,10)] => 2
[(1,4),(2,8),(3,9),(5,7),(6,10)] => 1
[(1,5),(2,8),(3,9),(4,7),(6,10)] => 1
[(1,6),(2,8),(3,9),(4,7),(5,10)] => 0
[(1,7),(2,8),(3,9),(4,6),(5,10)] => 0
[(1,8),(2,7),(3,9),(4,6),(5,10)] => 3
[(1,9),(2,7),(3,8),(4,6),(5,10)] => 3
[(1,10),(2,7),(3,8),(4,6),(5,9)] => 3
[(1,10),(2,8),(3,7),(4,6),(5,9)] => 4
[(1,9),(2,8),(3,7),(4,6),(5,10)] => 2
[(1,8),(2,9),(3,7),(4,6),(5,10)] => 4
[(1,7),(2,9),(3,8),(4,6),(5,10)] => 3
[(1,6),(2,9),(3,8),(4,7),(5,10)] => 2
[(1,5),(2,9),(3,8),(4,7),(6,10)] => 1
[(1,4),(2,9),(3,8),(5,7),(6,10)] => 1
[(1,3),(2,9),(4,8),(5,7),(6,10)] => 2
[(1,2),(3,9),(4,8),(5,7),(6,10)] => 2
[(1,2),(3,10),(4,8),(5,7),(6,9)] => 1
[(1,3),(2,10),(4,8),(5,7),(6,9)] => 1
[(1,4),(2,10),(3,8),(5,7),(6,9)] => 2
[(1,5),(2,10),(3,8),(4,7),(6,9)] => 2
[(1,6),(2,10),(3,8),(4,7),(5,9)] => 2
[(1,7),(2,10),(3,8),(4,6),(5,9)] => 2
[(1,8),(2,10),(3,7),(4,6),(5,9)] => 4
[(1,9),(2,10),(3,7),(4,6),(5,8)] => 0
[(1,10),(2,9),(3,7),(4,6),(5,8)] => 1
[(1,10),(2,9),(3,6),(4,7),(5,8)] => 3
[(1,9),(2,10),(3,6),(4,7),(5,8)] => 0
[(1,8),(2,10),(3,6),(4,7),(5,9)] => 3
[(1,7),(2,10),(3,6),(4,8),(5,9)] => 0
[(1,6),(2,10),(3,7),(4,8),(5,9)] => 0
[(1,5),(2,10),(3,7),(4,8),(6,9)] => 2
[(1,4),(2,10),(3,7),(5,8),(6,9)] => 2
[(1,3),(2,10),(4,7),(5,8),(6,9)] => 1
[(1,2),(3,10),(4,7),(5,8),(6,9)] => 1
[(1,2),(3,9),(4,7),(5,8),(6,10)] => 2
[(1,3),(2,9),(4,7),(5,8),(6,10)] => 2
[(1,4),(2,9),(3,7),(5,8),(6,10)] => 0
[(1,5),(2,9),(3,7),(4,8),(6,10)] => 0
[(1,6),(2,9),(3,7),(4,8),(5,10)] => 1
[(1,7),(2,9),(3,6),(4,8),(5,10)] => 1
[(1,8),(2,9),(3,6),(4,7),(5,10)] => 2
[(1,9),(2,8),(3,6),(4,7),(5,10)] => 2
[(1,10),(2,8),(3,6),(4,7),(5,9)] => 3
[(1,10),(2,7),(3,6),(4,8),(5,9)] => 2
[(1,9),(2,7),(3,6),(4,8),(5,10)] => 3
[(1,8),(2,7),(3,6),(4,9),(5,10)] => 1
[(1,7),(2,8),(3,6),(4,9),(5,10)] => 0
[(1,6),(2,8),(3,7),(4,9),(5,10)] => 0
[(1,5),(2,8),(3,7),(4,9),(6,10)] => 0
[(1,4),(2,8),(3,7),(5,9),(6,10)] => 0
[(1,3),(2,8),(4,7),(5,9),(6,10)] => 1
[(1,2),(3,8),(4,7),(5,9),(6,10)] => 1
[(1,2),(3,7),(4,8),(5,9),(6,10)] => 0
[(1,3),(2,7),(4,8),(5,9),(6,10)] => 0
[(1,4),(2,7),(3,8),(5,9),(6,10)] => 0
[(1,5),(2,7),(3,8),(4,9),(6,10)] => 0
[(1,6),(2,7),(3,8),(4,9),(5,10)] => 0
[(1,7),(2,6),(3,8),(4,9),(5,10)] => 0
[(1,8),(2,6),(3,7),(4,9),(5,10)] => 0
[(1,9),(2,6),(3,7),(4,8),(5,10)] => 0
[(1,10),(2,6),(3,7),(4,8),(5,9)] => 1
[(1,10),(2,5),(3,7),(4,8),(6,9)] => 2
[(1,9),(2,5),(3,7),(4,8),(6,10)] => 2
[(1,8),(2,5),(3,7),(4,9),(6,10)] => 2
[(1,7),(2,5),(3,8),(4,9),(6,10)] => 0
[(1,6),(2,5),(3,8),(4,9),(7,10)] => 0
[(1,5),(2,6),(3,8),(4,9),(7,10)] => 0
[(1,4),(2,6),(3,8),(5,9),(7,10)] => 0
[(1,3),(2,6),(4,8),(5,9),(7,10)] => 0
[(1,2),(3,6),(4,8),(5,9),(7,10)] => 0
[(1,2),(3,5),(4,8),(6,9),(7,10)] => 0
[(1,3),(2,5),(4,8),(6,9),(7,10)] => 0
[(1,4),(2,5),(3,8),(6,9),(7,10)] => 0
[(1,5),(2,4),(3,8),(6,9),(7,10)] => 0
[(1,6),(2,4),(3,8),(5,9),(7,10)] => 0
[(1,7),(2,4),(3,8),(5,9),(6,10)] => 0
[(1,8),(2,4),(3,7),(5,9),(6,10)] => 1
[(1,9),(2,4),(3,7),(5,8),(6,10)] => 2
[(1,10),(2,4),(3,7),(5,8),(6,9)] => 3
[(1,10),(2,3),(4,7),(5,8),(6,9)] => 0
[(1,9),(2,3),(4,7),(5,8),(6,10)] => 3
[(1,8),(2,3),(4,7),(5,9),(6,10)] => 0
[(1,7),(2,3),(4,8),(5,9),(6,10)] => 1
[(1,6),(2,3),(4,8),(5,9),(7,10)] => 1
[(1,5),(2,3),(4,8),(6,9),(7,10)] => 1
[(1,4),(2,3),(5,8),(6,9),(7,10)] => 1
[(1,3),(2,4),(5,8),(6,9),(7,10)] => 0
[(1,2),(3,4),(5,8),(6,9),(7,10)] => 0
[(1,2),(3,4),(5,7),(6,9),(8,10)] => 0
[(1,3),(2,4),(5,7),(6,9),(8,10)] => 0
[(1,4),(2,3),(5,7),(6,9),(8,10)] => 1
[(1,5),(2,3),(4,7),(6,9),(8,10)] => 1
[(1,6),(2,3),(4,7),(5,9),(8,10)] => 1
[(1,7),(2,3),(4,6),(5,9),(8,10)] => 1
[(1,8),(2,3),(4,6),(5,9),(7,10)] => 0
[(1,9),(2,3),(4,6),(5,8),(7,10)] => 3
[(1,10),(2,3),(4,6),(5,8),(7,9)] => 0
[(1,10),(2,4),(3,6),(5,8),(7,9)] => 1
[(1,9),(2,4),(3,6),(5,8),(7,10)] => 2
[(1,8),(2,4),(3,6),(5,9),(7,10)] => 1
[(1,7),(2,4),(3,6),(5,9),(8,10)] => 2
[(1,6),(2,4),(3,7),(5,9),(8,10)] => 1
[(1,5),(2,4),(3,7),(6,9),(8,10)] => 0
[(1,4),(2,5),(3,7),(6,9),(8,10)] => 0
[(1,3),(2,5),(4,7),(6,9),(8,10)] => 0
[(1,2),(3,5),(4,7),(6,9),(8,10)] => 0
[(1,2),(3,6),(4,7),(5,9),(8,10)] => 0
[(1,3),(2,6),(4,7),(5,9),(8,10)] => 0
[(1,4),(2,6),(3,7),(5,9),(8,10)] => 0
[(1,5),(2,6),(3,7),(4,9),(8,10)] => 0
[(1,6),(2,5),(3,7),(4,9),(8,10)] => 1
[(1,7),(2,5),(3,6),(4,9),(8,10)] => 2
[(1,8),(2,5),(3,6),(4,9),(7,10)] => 2
[(1,9),(2,5),(3,6),(4,8),(7,10)] => 2
[(1,10),(2,5),(3,6),(4,8),(7,9)] => 3
[(1,10),(2,6),(3,5),(4,8),(7,9)] => 3
[(1,9),(2,6),(3,5),(4,8),(7,10)] => 2
[(1,8),(2,6),(3,5),(4,9),(7,10)] => 2
[(1,7),(2,6),(3,5),(4,9),(8,10)] => 2
[(1,6),(2,7),(3,5),(4,9),(8,10)] => 2
[(1,5),(2,7),(3,6),(4,9),(8,10)] => 1
[(1,4),(2,7),(3,6),(5,9),(8,10)] => 1
[(1,3),(2,7),(4,6),(5,9),(8,10)] => 0
[(1,2),(3,7),(4,6),(5,9),(8,10)] => 0
[(1,2),(3,8),(4,6),(5,9),(7,10)] => 1
[(1,3),(2,8),(4,6),(5,9),(7,10)] => 1
[(1,4),(2,8),(3,6),(5,9),(7,10)] => 0
[(1,5),(2,8),(3,6),(4,9),(7,10)] => 0
[(1,6),(2,8),(3,5),(4,9),(7,10)] => 1
[(1,7),(2,8),(3,5),(4,9),(6,10)] => 1
[(1,8),(2,7),(3,5),(4,9),(6,10)] => 2
[(1,9),(2,7),(3,5),(4,8),(6,10)] => 2
[(1,10),(2,7),(3,5),(4,8),(6,9)] => 3
[(1,10),(2,8),(3,5),(4,7),(6,9)] => 1
[(1,9),(2,8),(3,5),(4,7),(6,10)] => 2
[(1,8),(2,9),(3,5),(4,7),(6,10)] => 3
[(1,7),(2,9),(3,5),(4,8),(6,10)] => 3
[(1,6),(2,9),(3,5),(4,8),(7,10)] => 3
[(1,5),(2,9),(3,6),(4,8),(7,10)] => 0
[(1,4),(2,9),(3,6),(5,8),(7,10)] => 0
[(1,3),(2,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,9),(4,6),(5,8),(7,10)] => 2
[(1,2),(3,10),(4,6),(5,8),(7,9)] => 1
[(1,3),(2,10),(4,6),(5,8),(7,9)] => 1
[(1,4),(2,10),(3,6),(5,8),(7,9)] => 2
[(1,5),(2,10),(3,6),(4,8),(7,9)] => 2
[(1,6),(2,10),(3,5),(4,8),(7,9)] => 3
[(1,7),(2,10),(3,5),(4,8),(6,9)] => 3
[(1,8),(2,10),(3,5),(4,7),(6,9)] => 0
[(1,9),(2,10),(3,5),(4,7),(6,8)] => 0
[(1,10),(2,9),(3,5),(4,7),(6,8)] => 1
[(1,10),(2,9),(3,4),(5,7),(6,8)] => 1
[(1,9),(2,10),(3,4),(5,7),(6,8)] => 0
[(1,8),(2,10),(3,4),(5,7),(6,9)] => 0
[(1,7),(2,10),(3,4),(5,8),(6,9)] => 0
[(1,6),(2,10),(3,4),(5,8),(7,9)] => 0
[(1,5),(2,10),(3,4),(6,8),(7,9)] => 1
[(1,4),(2,10),(3,5),(6,8),(7,9)] => 1
[(1,3),(2,10),(4,5),(6,8),(7,9)] => 0
[(1,2),(3,10),(4,5),(6,8),(7,9)] => 0
[(1,2),(3,9),(4,5),(6,8),(7,10)] => 1
[(1,3),(2,9),(4,5),(6,8),(7,10)] => 1
[(1,4),(2,9),(3,5),(6,8),(7,10)] => 0
[(1,5),(2,9),(3,4),(6,8),(7,10)] => 0
[(1,6),(2,9),(3,4),(5,8),(7,10)] => 1
[(1,7),(2,9),(3,4),(5,8),(6,10)] => 1
[(1,8),(2,9),(3,4),(5,7),(6,10)] => 4
[(1,9),(2,8),(3,4),(5,7),(6,10)] => 4
[(1,10),(2,8),(3,4),(5,7),(6,9)] => 1
[(1,10),(2,7),(3,4),(5,8),(6,9)] => 1
[(1,9),(2,7),(3,4),(5,8),(6,10)] => 2
[(1,8),(2,7),(3,4),(5,9),(6,10)] => 1
[(1,7),(2,8),(3,4),(5,9),(6,10)] => 0
[(1,6),(2,8),(3,4),(5,9),(7,10)] => 0
[(1,5),(2,8),(3,4),(6,9),(7,10)] => 0
[(1,4),(2,8),(3,5),(6,9),(7,10)] => 0
[(1,3),(2,8),(4,5),(6,9),(7,10)] => 1
[(1,2),(3,8),(4,5),(6,9),(7,10)] => 1
[(1,2),(3,7),(4,5),(6,9),(8,10)] => 1
[(1,3),(2,7),(4,5),(6,9),(8,10)] => 1
[(1,4),(2,7),(3,5),(6,9),(8,10)] => 0
[(1,5),(2,7),(3,4),(6,9),(8,10)] => 0
[(1,6),(2,7),(3,4),(5,9),(8,10)] => 2
[(1,7),(2,6),(3,4),(5,9),(8,10)] => 2
[(1,8),(2,6),(3,4),(5,9),(7,10)] => 1
[(1,9),(2,6),(3,4),(5,8),(7,10)] => 2
[(1,10),(2,6),(3,4),(5,8),(7,9)] => 1
[(1,10),(2,5),(3,4),(6,8),(7,9)] => 0
[(1,9),(2,5),(3,4),(6,8),(7,10)] => 1
[(1,8),(2,5),(3,4),(6,9),(7,10)] => 1
[(1,7),(2,5),(3,4),(6,9),(8,10)] => 1
[(1,6),(2,5),(3,4),(7,9),(8,10)] => 1
[(1,5),(2,6),(3,4),(7,9),(8,10)] => 0
[(1,4),(2,6),(3,5),(7,9),(8,10)] => 0
[(1,3),(2,6),(4,5),(7,9),(8,10)] => 1
[(1,2),(3,6),(4,5),(7,9),(8,10)] => 1
[(1,2),(3,5),(4,6),(7,9),(8,10)] => 0
[(1,3),(2,5),(4,6),(7,9),(8,10)] => 0
[(1,4),(2,5),(3,6),(7,9),(8,10)] => 0
[(1,5),(2,4),(3,6),(7,9),(8,10)] => 0
[(1,6),(2,4),(3,5),(7,9),(8,10)] => 1
[(1,7),(2,4),(3,5),(6,9),(8,10)] => 1
[(1,8),(2,4),(3,5),(6,9),(7,10)] => 1
[(1,9),(2,4),(3,5),(6,8),(7,10)] => 1
[(1,10),(2,4),(3,5),(6,8),(7,9)] => 0
[(1,10),(2,3),(4,5),(6,8),(7,9)] => 1
[(1,9),(2,3),(4,5),(6,8),(7,10)] => 0
[(1,8),(2,3),(4,5),(6,9),(7,10)] => 0
[(1,7),(2,3),(4,5),(6,9),(8,10)] => 0
[(1,6),(2,3),(4,5),(7,9),(8,10)] => 0
[(1,5),(2,3),(4,6),(7,9),(8,10)] => 1
[(1,4),(2,3),(5,6),(7,9),(8,10)] => 1
[(1,3),(2,4),(5,6),(7,9),(8,10)] => 0
[(1,2),(3,4),(5,6),(7,9),(8,10)] => 0
[(1,2),(3,4),(5,6),(7,10),(8,9)] => 1
[(1,3),(2,4),(5,6),(7,10),(8,9)] => 1
[(1,4),(2,3),(5,6),(7,10),(8,9)] => 0
[(1,5),(2,3),(4,6),(7,10),(8,9)] => 0
[(1,6),(2,3),(4,5),(7,10),(8,9)] => 1
[(1,7),(2,3),(4,5),(6,10),(8,9)] => 1
[(1,8),(2,3),(4,5),(6,10),(7,9)] => 0
[(1,9),(2,3),(4,5),(6,10),(7,8)] => 0
[(1,10),(2,3),(4,5),(6,9),(7,8)] => 1
[(1,10),(2,4),(3,5),(6,9),(7,8)] => 0
[(1,9),(2,4),(3,5),(6,10),(7,8)] => 1
[(1,8),(2,4),(3,5),(6,10),(7,9)] => 1
[(1,7),(2,4),(3,5),(6,10),(8,9)] => 0
[(1,6),(2,4),(3,5),(7,10),(8,9)] => 0
[(1,5),(2,4),(3,6),(7,10),(8,9)] => 1
[(1,4),(2,5),(3,6),(7,10),(8,9)] => 1
[(1,3),(2,5),(4,6),(7,10),(8,9)] => 1
[(1,2),(3,5),(4,6),(7,10),(8,9)] => 1
[(1,2),(3,6),(4,5),(7,10),(8,9)] => 0
[(1,3),(2,6),(4,5),(7,10),(8,9)] => 0
[(1,4),(2,6),(3,5),(7,10),(8,9)] => 1
[(1,5),(2,6),(3,4),(7,10),(8,9)] => 1
[(1,6),(2,5),(3,4),(7,10),(8,9)] => 0
[(1,7),(2,5),(3,4),(6,10),(8,9)] => 0
[(1,8),(2,5),(3,4),(6,10),(7,9)] => 1
[(1,9),(2,5),(3,4),(6,10),(7,8)] => 1
[(1,10),(2,5),(3,4),(6,9),(7,8)] => 0
[(1,10),(2,6),(3,4),(5,9),(7,8)] => 1
[(1,9),(2,6),(3,4),(5,10),(7,8)] => 0
[(1,8),(2,6),(3,4),(5,10),(7,9)] => 0
[(1,7),(2,6),(3,4),(5,10),(8,9)] => 3
[(1,6),(2,7),(3,4),(5,10),(8,9)] => 3
[(1,5),(2,7),(3,4),(6,10),(8,9)] => 1
[(1,4),(2,7),(3,5),(6,10),(8,9)] => 1
[(1,3),(2,7),(4,5),(6,10),(8,9)] => 0
[(1,2),(3,7),(4,5),(6,10),(8,9)] => 0
[(1,2),(3,8),(4,5),(6,10),(7,9)] => 1
[(1,3),(2,8),(4,5),(6,10),(7,9)] => 1
[(1,4),(2,8),(3,5),(6,10),(7,9)] => 0
[(1,5),(2,8),(3,4),(6,10),(7,9)] => 0
[(1,6),(2,8),(3,4),(5,10),(7,9)] => 1
[(1,7),(2,8),(3,4),(5,10),(6,9)] => 1
[(1,8),(2,7),(3,4),(5,10),(6,9)] => 0
[(1,9),(2,7),(3,4),(5,10),(6,8)] => 0
[(1,10),(2,7),(3,4),(5,9),(6,8)] => 1
[(1,10),(2,8),(3,4),(5,9),(6,7)] => 2
[(1,9),(2,8),(3,4),(5,10),(6,7)] => 3
[(1,8),(2,9),(3,4),(5,10),(6,7)] => 2
[(1,7),(2,9),(3,4),(5,10),(6,8)] => 1
[(1,6),(2,9),(3,4),(5,10),(7,8)] => 1
[(1,5),(2,9),(3,4),(6,10),(7,8)] => 0
[(1,4),(2,9),(3,5),(6,10),(7,8)] => 0
[(1,3),(2,9),(4,5),(6,10),(7,8)] => 1
[(1,2),(3,9),(4,5),(6,10),(7,8)] => 1
[(1,2),(3,10),(4,5),(6,9),(7,8)] => 0
[(1,3),(2,10),(4,5),(6,9),(7,8)] => 0
[(1,4),(2,10),(3,5),(6,9),(7,8)] => 1
[(1,5),(2,10),(3,4),(6,9),(7,8)] => 1
[(1,6),(2,10),(3,4),(5,9),(7,8)] => 0
[(1,7),(2,10),(3,4),(5,9),(6,8)] => 0
[(1,8),(2,10),(3,4),(5,9),(6,7)] => 3
[(1,9),(2,10),(3,4),(5,8),(6,7)] => 1
[(1,10),(2,9),(3,4),(5,8),(6,7)] => 0
[(1,10),(2,9),(3,5),(4,8),(6,7)] => 0
[(1,9),(2,10),(3,5),(4,8),(6,7)] => 1
[(1,8),(2,10),(3,5),(4,9),(6,7)] => 1
[(1,7),(2,10),(3,5),(4,9),(6,8)] => 0
[(1,6),(2,10),(3,5),(4,9),(7,8)] => 0
[(1,5),(2,10),(3,6),(4,9),(7,8)] => 2
[(1,4),(2,10),(3,6),(5,9),(7,8)] => 2
[(1,3),(2,10),(4,6),(5,9),(7,8)] => 1
[(1,2),(3,10),(4,6),(5,9),(7,8)] => 1
[(1,2),(3,9),(4,6),(5,10),(7,8)] => 0
[(1,3),(2,9),(4,6),(5,10),(7,8)] => 0
[(1,4),(2,9),(3,6),(5,10),(7,8)] => 1
[(1,5),(2,9),(3,6),(4,10),(7,8)] => 1
[(1,6),(2,9),(3,5),(4,10),(7,8)] => 1
[(1,7),(2,9),(3,5),(4,10),(6,8)] => 1
[(1,8),(2,9),(3,5),(4,10),(6,7)] => 4
[(1,9),(2,8),(3,5),(4,10),(6,7)] => 4
[(1,10),(2,8),(3,5),(4,9),(6,7)] => 0
[(1,10),(2,7),(3,5),(4,9),(6,8)] => 1
[(1,9),(2,7),(3,5),(4,10),(6,8)] => 0
[(1,8),(2,7),(3,5),(4,10),(6,9)] => 0
[(1,7),(2,8),(3,5),(4,10),(6,9)] => 1
[(1,6),(2,8),(3,5),(4,10),(7,9)] => 1
[(1,5),(2,8),(3,6),(4,10),(7,9)] => 1
[(1,4),(2,8),(3,6),(5,10),(7,9)] => 1
[(1,3),(2,8),(4,6),(5,10),(7,9)] => 0
[(1,2),(3,8),(4,6),(5,10),(7,9)] => 0
[(1,2),(3,7),(4,6),(5,10),(8,9)] => 1
[(1,3),(2,7),(4,6),(5,10),(8,9)] => 1
[(1,4),(2,7),(3,6),(5,10),(8,9)] => 0
[(1,5),(2,7),(3,6),(4,10),(8,9)] => 0
[(1,6),(2,7),(3,5),(4,10),(8,9)] => 3
[(1,7),(2,6),(3,5),(4,10),(8,9)] => 3
[(1,8),(2,6),(3,5),(4,10),(7,9)] => 0
[(1,9),(2,6),(3,5),(4,10),(7,8)] => 0
[(1,10),(2,6),(3,5),(4,9),(7,8)] => 1
[(1,10),(2,5),(3,6),(4,9),(7,8)] => 1
[(1,9),(2,5),(3,6),(4,10),(7,8)] => 0
[(1,8),(2,5),(3,6),(4,10),(7,9)] => 0
[(1,7),(2,5),(3,6),(4,10),(8,9)] => 3
[(1,6),(2,5),(3,7),(4,10),(8,9)] => 0
[(1,5),(2,6),(3,7),(4,10),(8,9)] => 1
[(1,4),(2,6),(3,7),(5,10),(8,9)] => 1
[(1,3),(2,6),(4,7),(5,10),(8,9)] => 1
[(1,2),(3,6),(4,7),(5,10),(8,9)] => 1
[(1,2),(3,5),(4,7),(6,10),(8,9)] => 1
[(1,3),(2,5),(4,7),(6,10),(8,9)] => 1
[(1,4),(2,5),(3,7),(6,10),(8,9)] => 1
[(1,5),(2,4),(3,7),(6,10),(8,9)] => 1
[(1,6),(2,4),(3,7),(5,10),(8,9)] => 0
[(1,7),(2,4),(3,6),(5,10),(8,9)] => 3
[(1,8),(2,4),(3,6),(5,10),(7,9)] => 0
[(1,9),(2,4),(3,6),(5,10),(7,8)] => 0
[(1,10),(2,4),(3,6),(5,9),(7,8)] => 1
[(1,10),(2,3),(4,6),(5,9),(7,8)] => 0
[(1,9),(2,3),(4,6),(5,10),(7,8)] => 1
[(1,8),(2,3),(4,6),(5,10),(7,9)] => 1
[(1,7),(2,3),(4,6),(5,10),(8,9)] => 0
[(1,6),(2,3),(4,7),(5,10),(8,9)] => 0
[(1,5),(2,3),(4,7),(6,10),(8,9)] => 0
[(1,4),(2,3),(5,7),(6,10),(8,9)] => 0
[(1,3),(2,4),(5,7),(6,10),(8,9)] => 1
[(1,2),(3,4),(5,7),(6,10),(8,9)] => 1
[(1,2),(3,4),(5,8),(6,10),(7,9)] => 0
[(1,3),(2,4),(5,8),(6,10),(7,9)] => 0
[(1,4),(2,3),(5,8),(6,10),(7,9)] => 1
[(1,5),(2,3),(4,8),(6,10),(7,9)] => 1
[(1,6),(2,3),(4,8),(5,10),(7,9)] => 0
[(1,7),(2,3),(4,8),(5,10),(6,9)] => 0
[(1,8),(2,3),(4,7),(5,10),(6,9)] => 1
[(1,9),(2,3),(4,7),(5,10),(6,8)] => 1
[(1,10),(2,3),(4,7),(5,9),(6,8)] => 0
[(1,10),(2,4),(3,7),(5,9),(6,8)] => 3
[(1,9),(2,4),(3,7),(5,10),(6,8)] => 3
[(1,8),(2,4),(3,7),(5,10),(6,9)] => 0
[(1,7),(2,4),(3,8),(5,10),(6,9)] => 1
[(1,6),(2,4),(3,8),(5,10),(7,9)] => 1
[(1,5),(2,4),(3,8),(6,10),(7,9)] => 0
[(1,4),(2,5),(3,8),(6,10),(7,9)] => 0
[(1,3),(2,5),(4,8),(6,10),(7,9)] => 0
[(1,2),(3,5),(4,8),(6,10),(7,9)] => 0
[(1,2),(3,6),(4,8),(5,10),(7,9)] => 1
[(1,3),(2,6),(4,8),(5,10),(7,9)] => 1
[(1,4),(2,6),(3,8),(5,10),(7,9)] => 0
[(1,5),(2,6),(3,8),(4,10),(7,9)] => 0
[(1,6),(2,5),(3,8),(4,10),(7,9)] => 1
[(1,7),(2,5),(3,8),(4,10),(6,9)] => 1
[(1,8),(2,5),(3,7),(4,10),(6,9)] => 0
[(1,9),(2,5),(3,7),(4,10),(6,8)] => 3
[(1,10),(2,5),(3,7),(4,9),(6,8)] => 3
[(1,10),(2,6),(3,7),(4,9),(5,8)] => 2
[(1,9),(2,6),(3,7),(4,10),(5,8)] => 0
[(1,8),(2,6),(3,7),(4,10),(5,9)] => 0
[(1,7),(2,6),(3,8),(4,10),(5,9)] => 0
[(1,6),(2,7),(3,8),(4,10),(5,9)] => 0
[(1,5),(2,7),(3,8),(4,10),(6,9)] => 0
[(1,4),(2,7),(3,8),(5,10),(6,9)] => 0
[(1,3),(2,7),(4,8),(5,10),(6,9)] => 1
[(1,2),(3,7),(4,8),(5,10),(6,9)] => 1
[(1,2),(3,8),(4,7),(5,10),(6,9)] => 0
[(1,3),(2,8),(4,7),(5,10),(6,9)] => 0
[(1,4),(2,8),(3,7),(5,10),(6,9)] => 1
[(1,5),(2,8),(3,7),(4,10),(6,9)] => 1
[(1,6),(2,8),(3,7),(4,10),(5,9)] => 0
[(1,7),(2,8),(3,6),(4,10),(5,9)] => 0
[(1,8),(2,7),(3,6),(4,10),(5,9)] => 1
[(1,9),(2,7),(3,6),(4,10),(5,8)] => 1
[(1,10),(2,7),(3,6),(4,9),(5,8)] => 0
[(1,10),(2,8),(3,6),(4,9),(5,7)] => 3
[(1,9),(2,8),(3,6),(4,10),(5,7)] => 2
[(1,8),(2,9),(3,6),(4,10),(5,7)] => 3
[(1,7),(2,9),(3,6),(4,10),(5,8)] => 0
[(1,6),(2,9),(3,7),(4,10),(5,8)] => 1
[(1,5),(2,9),(3,7),(4,10),(6,8)] => 3
[(1,4),(2,9),(3,7),(5,10),(6,8)] => 3
[(1,3),(2,9),(4,7),(5,10),(6,8)] => 0
[(1,2),(3,9),(4,7),(5,10),(6,8)] => 0
[(1,2),(3,10),(4,7),(5,9),(6,8)] => 1
[(1,3),(2,10),(4,7),(5,9),(6,8)] => 1
[(1,4),(2,10),(3,7),(5,9),(6,8)] => 2
[(1,5),(2,10),(3,7),(4,9),(6,8)] => 2
[(1,6),(2,10),(3,7),(4,9),(5,8)] => 3
[(1,7),(2,10),(3,6),(4,9),(5,8)] => 1
[(1,8),(2,10),(3,6),(4,9),(5,7)] => 0
[(1,9),(2,10),(3,6),(4,8),(5,7)] => 0
[(1,10),(2,9),(3,6),(4,8),(5,7)] => 1
[(1,10),(2,9),(3,7),(4,8),(5,6)] => 1
[(1,9),(2,10),(3,7),(4,8),(5,6)] => 0
[(1,8),(2,10),(3,7),(4,9),(5,6)] => 0
[(1,7),(2,10),(3,8),(4,9),(5,6)] => 2
[(1,6),(2,10),(3,8),(4,9),(5,7)] => 3
[(1,5),(2,10),(3,8),(4,9),(6,7)] => 4
[(1,4),(2,10),(3,8),(5,9),(6,7)] => 4
[(1,3),(2,10),(4,8),(5,9),(6,7)] => 2
[(1,2),(3,10),(4,8),(5,9),(6,7)] => 2
[(1,2),(3,9),(4,8),(5,10),(6,7)] => 3
[(1,3),(2,9),(4,8),(5,10),(6,7)] => 3
[(1,4),(2,9),(3,8),(5,10),(6,7)] => 2
[(1,5),(2,9),(3,8),(4,10),(6,7)] => 2
[(1,6),(2,9),(3,8),(4,10),(5,7)] => 3
[(1,7),(2,9),(3,8),(4,10),(5,6)] => 3
[(1,8),(2,9),(3,7),(4,10),(5,6)] => 5
[(1,9),(2,8),(3,7),(4,10),(5,6)] => 2
[(1,10),(2,8),(3,7),(4,9),(5,6)] => 1
[(1,10),(2,7),(3,8),(4,9),(5,6)] => 3
[(1,9),(2,7),(3,8),(4,10),(5,6)] => 2
[(1,8),(2,7),(3,9),(4,10),(5,6)] => 3
[(1,7),(2,8),(3,9),(4,10),(5,6)] => 0
[(1,6),(2,8),(3,9),(4,10),(5,7)] => 0
[(1,5),(2,8),(3,9),(4,10),(6,7)] => 2
[(1,4),(2,8),(3,9),(5,10),(6,7)] => 2
[(1,3),(2,8),(4,9),(5,10),(6,7)] => 1
[(1,2),(3,8),(4,9),(5,10),(6,7)] => 1
[(1,2),(3,7),(4,9),(5,10),(6,8)] => 2
[(1,3),(2,7),(4,9),(5,10),(6,8)] => 2
[(1,4),(2,7),(3,9),(5,10),(6,8)] => 1
[(1,5),(2,7),(3,9),(4,10),(6,8)] => 1
[(1,6),(2,7),(3,9),(4,10),(5,8)] => 0
[(1,7),(2,6),(3,9),(4,10),(5,8)] => 0
[(1,8),(2,6),(3,9),(4,10),(5,7)] => 1
[(1,9),(2,6),(3,8),(4,10),(5,7)] => 2
[(1,10),(2,6),(3,8),(4,9),(5,7)] => 3
[(1,10),(2,5),(3,8),(4,9),(6,7)] => 2
[(1,9),(2,5),(3,8),(4,10),(6,7)] => 4
[(1,8),(2,5),(3,9),(4,10),(6,7)] => 2
[(1,7),(2,5),(3,9),(4,10),(6,8)] => 1
[(1,6),(2,5),(3,9),(4,10),(7,8)] => 1
[(1,5),(2,6),(3,9),(4,10),(7,8)] => 0
[(1,4),(2,6),(3,9),(5,10),(7,8)] => 0
[(1,3),(2,6),(4,9),(5,10),(7,8)] => 2
[(1,2),(3,6),(4,9),(5,10),(7,8)] => 2
[(1,2),(3,5),(4,9),(6,10),(7,8)] => 0
[(1,3),(2,5),(4,9),(6,10),(7,8)] => 0
[(1,4),(2,5),(3,9),(6,10),(7,8)] => 0
[(1,5),(2,4),(3,9),(6,10),(7,8)] => 0
[(1,6),(2,4),(3,9),(5,10),(7,8)] => 1
[(1,7),(2,4),(3,9),(5,10),(6,8)] => 1
[(1,8),(2,4),(3,9),(5,10),(6,7)] => 2
[(1,9),(2,4),(3,8),(5,10),(6,7)] => 2
[(1,10),(2,4),(3,8),(5,9),(6,7)] => 2
[(1,10),(2,3),(4,8),(5,9),(6,7)] => 3
[(1,9),(2,3),(4,8),(5,10),(6,7)] => 2
[(1,8),(2,3),(4,9),(5,10),(6,7)] => 0
[(1,7),(2,3),(4,9),(5,10),(6,8)] => 3
[(1,6),(2,3),(4,9),(5,10),(7,8)] => 3
[(1,5),(2,3),(4,9),(6,10),(7,8)] => 1
[(1,4),(2,3),(5,9),(6,10),(7,8)] => 1
[(1,3),(2,4),(5,9),(6,10),(7,8)] => 0
[(1,2),(3,4),(5,9),(6,10),(7,8)] => 0
[(1,2),(3,4),(5,10),(6,9),(7,8)] => 1
[(1,3),(2,4),(5,10),(6,9),(7,8)] => 1
[(1,4),(2,3),(5,10),(6,9),(7,8)] => 0
[(1,5),(2,3),(4,10),(6,9),(7,8)] => 0
[(1,6),(2,3),(4,10),(5,9),(7,8)] => 3
[(1,7),(2,3),(4,10),(5,9),(6,8)] => 3
[(1,8),(2,3),(4,10),(5,9),(6,7)] => 2
[(1,9),(2,3),(4,10),(5,8),(6,7)] => 0
[(1,10),(2,3),(4,9),(5,8),(6,7)] => 1
[(1,10),(2,4),(3,9),(5,8),(6,7)] => 0
[(1,9),(2,4),(3,10),(5,8),(6,7)] => 1
[(1,8),(2,4),(3,10),(5,9),(6,7)] => 3
[(1,7),(2,4),(3,10),(5,9),(6,8)] => 0
[(1,6),(2,4),(3,10),(5,9),(7,8)] => 0
[(1,5),(2,4),(3,10),(6,9),(7,8)] => 1
[(1,4),(2,5),(3,10),(6,9),(7,8)] => 1
[(1,3),(2,5),(4,10),(6,9),(7,8)] => 1
[(1,2),(3,5),(4,10),(6,9),(7,8)] => 1
[(1,2),(3,6),(4,10),(5,9),(7,8)] => 2
[(1,3),(2,6),(4,10),(5,9),(7,8)] => 2
[(1,4),(2,6),(3,10),(5,9),(7,8)] => 1
[(1,5),(2,6),(3,10),(4,9),(7,8)] => 1
[(1,6),(2,5),(3,10),(4,9),(7,8)] => 0
[(1,7),(2,5),(3,10),(4,9),(6,8)] => 0
[(1,8),(2,5),(3,10),(4,9),(6,7)] => 1
[(1,9),(2,5),(3,10),(4,8),(6,7)] => 1
[(1,10),(2,5),(3,9),(4,8),(6,7)] => 0
[(1,10),(2,6),(3,9),(4,8),(5,7)] => 4
[(1,9),(2,6),(3,10),(4,8),(5,7)] => 4
[(1,8),(2,6),(3,10),(4,9),(5,7)] => 0
[(1,7),(2,6),(3,10),(4,9),(5,8)] => 1
[(1,6),(2,7),(3,10),(4,9),(5,8)] => 1
[(1,5),(2,7),(3,10),(4,9),(6,8)] => 2
[(1,4),(2,7),(3,10),(5,9),(6,8)] => 2
[(1,3),(2,7),(4,10),(5,9),(6,8)] => 2
[(1,2),(3,7),(4,10),(5,9),(6,8)] => 2
[(1,2),(3,8),(4,10),(5,9),(6,7)] => 3
[(1,3),(2,8),(4,10),(5,9),(6,7)] => 3
[(1,4),(2,8),(3,10),(5,9),(6,7)] => 2
[(1,5),(2,8),(3,10),(4,9),(6,7)] => 2
[(1,6),(2,8),(3,10),(4,9),(5,7)] => 3
[(1,7),(2,8),(3,10),(4,9),(5,6)] => 3
[(1,8),(2,7),(3,10),(4,9),(5,6)] => 0
[(1,9),(2,7),(3,10),(4,8),(5,6)] => 0
[(1,10),(2,7),(3,9),(4,8),(5,6)] => 1
[(1,10),(2,8),(3,9),(4,7),(5,6)] => 0
[(1,9),(2,8),(3,10),(4,7),(5,6)] => 1
[(1,8),(2,9),(3,10),(4,7),(5,6)] => 1
[(1,7),(2,9),(3,10),(4,8),(5,6)] => 5
[(1,6),(2,9),(3,10),(4,8),(5,7)] => 4
[(1,5),(2,9),(3,10),(4,8),(6,7)] => 2
[(1,4),(2,9),(3,10),(5,8),(6,7)] => 2
[(1,3),(2,9),(4,10),(5,8),(6,7)] => 1
[(1,2),(3,9),(4,10),(5,8),(6,7)] => 1
[(1,2),(3,10),(4,9),(5,8),(6,7)] => 0
[(1,3),(2,10),(4,9),(5,8),(6,7)] => 0
[(1,4),(2,10),(3,9),(5,8),(6,7)] => 3
[(1,5),(2,10),(3,9),(4,8),(6,7)] => 3
[(1,6),(2,10),(3,9),(4,8),(5,7)] => 2
[(1,7),(2,10),(3,9),(4,8),(5,6)] => 2
[(1,8),(2,10),(3,9),(4,7),(5,6)] => 1
[(1,9),(2,10),(3,8),(4,7),(5,6)] => 1
[(1,10),(2,9),(3,8),(4,7),(5,6)] => 0
[(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 1
[(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 0
[(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 0
[(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 1
[(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 0
[(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 0
[(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 1
[(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 1
[(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 0
[(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 1
[(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 1
[(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 0
[(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 1
[(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 0
[(1,2),(3,4),(5,6),(7,8),(9,11),(10,12)] => 0
[(1,2),(3,4),(5,6),(7,9),(8,10),(11,12)] => 0
[(1,2),(3,4),(5,6),(7,9),(8,11),(10,12)] => 0
[(1,2),(3,4),(5,6),(7,10),(8,11),(9,12)] => 0
[(1,2),(3,4),(5,7),(6,8),(9,10),(11,12)] => 0
[(1,2),(3,4),(5,7),(6,8),(9,11),(10,12)] => 0
[(1,2),(3,4),(5,7),(6,9),(8,10),(11,12)] => 0
[(1,2),(3,4),(5,7),(6,9),(8,11),(10,12)] => 0
[(1,2),(3,4),(5,7),(6,10),(8,11),(9,12)] => 0
[(1,2),(3,4),(5,8),(6,9),(7,10),(11,12)] => 0
[(1,2),(3,4),(5,8),(6,9),(7,11),(10,12)] => 0
[(1,2),(3,4),(5,8),(6,10),(7,11),(9,12)] => 0
[(1,2),(3,4),(5,9),(6,10),(7,11),(8,12)] => 0
[(1,2),(3,5),(4,6),(7,8),(9,10),(11,12)] => 0
[(1,2),(3,5),(4,6),(7,8),(9,11),(10,12)] => 0
[(1,2),(3,5),(4,6),(7,9),(8,10),(11,12)] => 0
[(1,2),(3,5),(4,6),(7,9),(8,11),(10,12)] => 0
[(1,2),(3,5),(4,6),(7,10),(8,11),(9,12)] => 0
[(1,2),(3,5),(4,7),(6,8),(9,10),(11,12)] => 0
[(1,2),(3,5),(4,7),(6,8),(9,11),(10,12)] => 0
[(1,2),(3,5),(4,7),(6,9),(8,10),(11,12)] => 0
[(1,2),(3,5),(4,7),(6,9),(8,11),(10,12)] => 0
[(1,2),(3,5),(4,7),(6,10),(8,11),(9,12)] => 0
[(1,2),(3,4),(5,6),(7,9),(8,12),(10,11)] => 1
[(1,2),(3,4),(5,6),(7,10),(8,12),(9,11)] => 0
[(1,2),(3,4),(5,6),(7,11),(8,9),(10,12)] => 1
[(1,2),(3,4),(5,6),(7,11),(8,10),(9,12)] => 0
[(1,2),(3,4),(5,6),(7,11),(8,12),(9,10)] => 0
[(1,2),(3,4),(5,6),(7,12),(8,10),(9,11)] => 1
[(1,2),(3,4),(5,7),(6,8),(9,12),(10,11)] => 1
[(1,2),(3,4),(5,7),(6,9),(8,12),(10,11)] => 1
[(1,2),(3,4),(5,7),(6,10),(8,9),(11,12)] => 1
[(1,2),(3,4),(5,7),(6,10),(8,12),(9,11)] => 0
[(1,2),(3,4),(5,7),(6,11),(8,9),(10,12)] => 1
[(1,2),(3,4),(5,7),(6,11),(8,10),(9,12)] => 0
[(1,2),(3,4),(5,7),(6,11),(8,12),(9,10)] => 0
[(1,2),(3,4),(5,7),(6,12),(8,9),(10,11)] => 0
[(1,2),(3,4),(5,7),(6,12),(8,10),(9,11)] => 1
[(1,2),(3,4),(5,7),(6,12),(8,11),(9,10)] => 1
[(1,2),(3,4),(5,8),(6,7),(9,11),(10,12)] => 1
[(1,2),(3,4),(5,8),(6,9),(7,12),(10,11)] => 1
[(1,2),(3,4),(5,8),(6,10),(7,12),(9,11)] => 1
[(1,2),(3,4),(5,8),(6,10),(7,9),(11,12)] => 0
[(1,2),(3,4),(5,8),(6,11),(7,12),(9,10)] => 2
[(1,2),(3,4),(5,8),(6,11),(7,10),(9,12)] => 1
[(1,2),(3,4),(5,8),(6,11),(7,9),(10,12)] => 0
[(1,2),(3,4),(5,8),(6,12),(7,11),(9,10)] => 2
[(1,2),(3,4),(5,8),(6,12),(7,10),(9,11)] => 2
[(1,2),(3,4),(5,8),(6,12),(7,9),(10,11)] => 1
[(1,2),(3,4),(5,9),(6,7),(8,10),(11,12)] => 1
[(1,2),(3,4),(5,9),(6,7),(8,11),(10,12)] => 1
[(1,2),(3,4),(5,9),(6,7),(8,12),(10,11)] => 0
[(1,2),(3,4),(5,9),(6,8),(7,12),(10,11)] => 1
[(1,2),(3,4),(5,9),(6,8),(7,11),(10,12)] => 0
[(1,2),(3,4),(5,9),(6,8),(7,10),(11,12)] => 0
[(1,2),(3,4),(5,9),(6,10),(7,12),(8,11)] => 1
[(1,2),(3,4),(5,9),(6,10),(7,8),(11,12)] => 0
[(1,2),(3,4),(5,9),(6,11),(7,12),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,11),(7,10),(8,12)] => 1
[(1,2),(3,4),(5,9),(6,11),(7,8),(10,12)] => 0
[(1,2),(3,4),(5,9),(6,12),(7,11),(8,10)] => 2
[(1,2),(3,4),(5,9),(6,12),(7,10),(8,11)] => 2
[(1,2),(3,4),(5,9),(6,12),(7,8),(10,11)] => 1
[(1,2),(3,4),(5,10),(6,7),(8,11),(9,12)] => 1
[(1,2),(3,4),(5,10),(6,7),(8,12),(9,11)] => 1
[(1,2),(3,4),(5,10),(6,8),(7,12),(9,11)] => 0
[(1,2),(3,4),(5,10),(6,8),(7,11),(9,12)] => 1
[(1,2),(3,4),(5,10),(6,8),(7,9),(11,12)] => 1
[(1,2),(3,4),(5,10),(6,9),(7,12),(8,11)] => 0
[(1,2),(3,4),(5,10),(6,9),(7,11),(8,12)] => 1
[(1,2),(3,4),(5,10),(6,11),(7,12),(8,9)] => 1
[(1,2),(3,4),(5,10),(6,11),(7,9),(8,12)] => 2
[(1,2),(3,4),(5,10),(6,11),(7,8),(9,12)] => 2
[(1,2),(3,4),(5,10),(6,12),(7,11),(8,9)] => 3
[(1,2),(3,4),(5,10),(6,12),(7,9),(8,11)] => 0
[(1,2),(3,4),(5,10),(6,12),(7,8),(9,11)] => 0
[(1,2),(3,4),(5,11),(6,7),(8,9),(10,12)] => 0
[(1,2),(3,4),(5,11),(6,7),(8,10),(9,12)] => 1
[(1,2),(3,4),(5,11),(6,7),(8,12),(9,10)] => 1
[(1,2),(3,4),(5,11),(6,8),(7,12),(9,10)] => 0
[(1,2),(3,4),(5,11),(6,8),(7,10),(9,12)] => 2
[(1,2),(3,4),(5,11),(6,8),(7,9),(10,12)] => 1
[(1,2),(3,4),(5,11),(6,9),(7,12),(8,10)] => 0
[(1,2),(3,4),(5,11),(6,9),(7,10),(8,12)] => 2
[(1,2),(3,4),(5,11),(6,9),(7,8),(10,12)] => 1
[(1,2),(3,4),(5,11),(6,10),(7,12),(8,9)] => 3
[(1,2),(3,4),(5,11),(6,10),(7,9),(8,12)] => 2
[(1,2),(3,4),(5,11),(6,10),(7,8),(9,12)] => 2
[(1,2),(3,4),(5,11),(6,12),(7,10),(8,9)] => 1
[(1,2),(3,4),(5,11),(6,12),(7,9),(8,10)] => 0
[(1,2),(3,4),(5,11),(6,12),(7,8),(9,10)] => 0
[(1,2),(3,4),(5,12),(6,7),(8,10),(9,11)] => 0
[(1,2),(3,4),(5,12),(6,8),(7,11),(9,10)] => 1
[(1,2),(3,4),(5,12),(6,8),(7,10),(9,11)] => 1
[(1,2),(3,4),(5,12),(6,8),(7,9),(10,11)] => 0
[(1,2),(3,4),(5,12),(6,9),(7,11),(8,10)] => 1
[(1,2),(3,4),(5,12),(6,9),(7,10),(8,11)] => 1
[(1,2),(3,4),(5,12),(6,10),(7,11),(8,9)] => 2
[(1,2),(3,4),(5,12),(6,10),(7,9),(8,11)] => 1
[(1,2),(3,4),(5,12),(6,10),(7,8),(9,11)] => 1
[(1,2),(3,4),(5,12),(6,11),(7,9),(8,10)] => 1
[(1,2),(3,5),(4,6),(7,8),(9,12),(10,11)] => 1
[(1,2),(3,5),(4,6),(7,9),(8,12),(10,11)] => 1
[(1,2),(3,5),(4,6),(7,10),(8,9),(11,12)] => 1
[(1,2),(3,5),(4,6),(7,10),(8,12),(9,11)] => 0
[(1,2),(3,5),(4,6),(7,11),(8,9),(10,12)] => 1
[(1,2),(3,5),(4,6),(7,11),(8,10),(9,12)] => 0
[(1,2),(3,5),(4,6),(7,11),(8,12),(9,10)] => 0
[(1,2),(3,5),(4,6),(7,12),(8,9),(10,11)] => 0
[(1,2),(3,5),(4,6),(7,12),(8,10),(9,11)] => 1
[(1,2),(3,5),(4,6),(7,12),(8,11),(9,10)] => 1
[(1,2),(3,5),(4,7),(6,8),(9,12),(10,11)] => 1
[(1,2),(3,5),(4,7),(6,9),(8,12),(10,11)] => 1
[(1,2),(3,5),(4,7),(6,10),(8,9),(11,12)] => 1
[(1,2),(3,5),(4,7),(6,10),(8,12),(9,11)] => 0
[(1,2),(3,5),(4,7),(6,11),(8,9),(10,12)] => 1
[(1,2),(3,5),(4,7),(6,11),(8,10),(9,12)] => 0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
2,1 9,6 45,45,13,2 349,334,139,97,24,2
$F_{2} = 1$
$F_{4} = 2 + q$
$F_{6} = 9 + 6\ q$
$F_{8} = 45 + 45\ q + 13\ q^{2} + 2\ q^{3}$
$F_{10} = 349 + 334\ q + 139\ q^{2} + 97\ q^{3} + 24\ q^{4} + 2\ q^{5}$
Description
The Grundy value for the game of removing nestings in a perfect matching.
A move consists of choosing a nesting, that is two pairs $(a,d)$ and $(b,c)$ with $a < b < c < d$ and replacing them with the two pairs $(a,b)$ and $(c,d)$. The player facing a non-nesting matching looses.
A move consists of choosing a nesting, that is two pairs $(a,d)$ and $(b,c)$ with $a < b < c < d$ and replacing them with the two pairs $(a,b)$ and $(c,d)$. The player facing a non-nesting matching looses.
Code
@cached_function
def statistic(w):
def children(m):
for (a,b),(c,d) in m.nestings():
m_new = list(m)
m_new.remove((a,b))
m_new.remove((c,d))
A = min(a,b)
B = max(a,b)
C = min(c,d)
D = max(c,d)
if C < A:
(A,B),(C,D) = (C,D),(A,B)
yield PerfectMatching(m_new + [(A,C), (B,D)])
l = [statistic(v) for v in children(w)]
i = 0
while i in l:
i += 1
return i
Created
Apr 07, 2017 at 21:48 by Martin Rubey
Updated
Apr 08, 2017 at 08:58 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!