Identifier
- St000755: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[1]=>1
[2]=>2
[1,1]=>1
[3]=>1
[2,1]=>2
[1,1,1]=>1
[4]=>2
[3,1]=>1
[2,2]=>2
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>1
[4,1]=>2
[3,2]=>1
[3,1,1]=>1
[2,2,1]=>2
[2,1,1,1]=>2
[1,1,1,1,1]=>1
[6]=>2
[5,1]=>1
[4,2]=>2
[4,1,1]=>2
[3,3]=>1
[3,2,1]=>1
[3,1,1,1]=>1
[2,2,2]=>2
[2,2,1,1]=>2
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>2
[5,2]=>1
[5,1,1]=>1
[4,3]=>2
[4,2,1]=>2
[4,1,1,1]=>2
[3,3,1]=>1
[3,2,2]=>3
[3,2,1,1]=>1
[3,1,1,1,1]=>1
[2,2,2,1]=>2
[2,2,1,1,1]=>2
[2,1,1,1,1,1]=>2
[1,1,1,1,1,1,1]=>1
[8]=>2
[7,1]=>1
[6,2]=>2
[6,1,1]=>2
[5,3]=>1
[5,2,1]=>1
[5,1,1,1]=>1
[4,4]=>2
[4,3,1]=>2
[4,2,2]=>2
[4,2,1,1]=>2
[4,1,1,1,1]=>2
[3,3,2]=>1
[3,3,1,1]=>1
[3,2,2,1]=>1
[3,2,1,1,1]=>1
[3,1,1,1,1,1]=>1
[2,2,2,2]=>2
[2,2,2,1,1]=>2
[2,2,1,1,1,1]=>2
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>2
[7,2]=>1
[7,1,1]=>1
[6,3]=>2
[6,2,1]=>2
[6,1,1,1]=>2
[5,4]=>1
[5,3,1]=>1
[5,2,2]=>3
[5,2,1,1]=>1
[5,1,1,1,1]=>1
[4,4,1]=>2
[4,3,2]=>2
[4,3,1,1]=>2
[4,2,2,1]=>2
[4,2,1,1,1]=>2
[4,1,1,1,1,1]=>2
[3,3,3]=>1
[3,3,2,1]=>1
[3,3,1,1,1]=>1
[3,2,2,2]=>3
[3,2,2,1,1]=>1
[3,2,1,1,1,1]=>1
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>2
[2,2,2,1,1,1]=>2
[2,2,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1]=>1
[10]=>2
[9,1]=>1
[8,2]=>2
[8,1,1]=>2
[7,3]=>1
[7,2,1]=>1
[7,1,1,1]=>1
[6,4]=>2
[6,3,1]=>2
[6,2,2]=>2
[6,2,1,1]=>2
[6,1,1,1,1]=>2
[5,5]=>1
[5,4,1]=>1
[5,3,2]=>1
[5,3,1,1]=>1
[5,2,2,1]=>1
[5,2,1,1,1]=>1
[5,1,1,1,1,1]=>1
[4,4,2]=>2
[4,4,1,1]=>2
[4,3,3]=>2
[4,3,2,1]=>2
[4,3,1,1,1]=>2
[4,2,2,2]=>2
[4,2,2,1,1]=>2
[4,2,1,1,1,1]=>2
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>1
[3,3,2,2]=>1
[3,3,2,1,1]=>1
[3,3,1,1,1,1]=>1
[3,2,2,2,1]=>3
[3,2,2,1,1,1]=>1
[3,2,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>2
[2,2,2,2,1,1]=>2
[2,2,2,1,1,1,1]=>2
[2,2,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>1
[10,1]=>2
[9,2]=>1
[9,1,1]=>1
[8,3]=>2
[8,2,1]=>2
[8,1,1,1]=>2
[7,4]=>1
[7,3,1]=>1
[7,2,2]=>3
[7,2,1,1]=>1
[7,1,1,1,1]=>1
[6,5]=>2
[6,4,1]=>2
[6,3,2]=>2
[6,3,1,1]=>2
[6,2,2,1]=>2
[6,2,1,1,1]=>2
[6,1,1,1,1,1]=>2
[5,5,1]=>1
[5,4,2]=>3
[5,4,1,1]=>1
[5,3,3]=>1
[5,3,2,1]=>1
[5,3,1,1,1]=>1
[5,2,2,2]=>3
[5,2,2,1,1]=>1
[5,2,1,1,1,1]=>1
[5,1,1,1,1,1,1]=>1
[4,4,3]=>2
[4,4,2,1]=>2
[4,4,1,1,1]=>2
[4,3,3,1]=>2
[4,3,2,2]=>2
[4,3,2,1,1]=>2
[4,3,1,1,1,1]=>2
[4,2,2,2,1]=>2
[4,2,2,1,1,1]=>2
[4,2,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1]=>2
[3,3,3,2]=>1
[3,3,3,1,1]=>1
[3,3,2,2,1]=>1
[3,3,2,1,1,1]=>1
[3,3,1,1,1,1,1]=>1
[3,2,2,2,2]=>3
[3,2,2,2,1,1]=>1
[3,2,2,1,1,1,1]=>1
[3,2,1,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,1]=>2
[2,2,2,2,1,1,1]=>2
[2,2,2,1,1,1,1,1]=>2
[2,2,1,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>2
[11,1]=>1
[10,2]=>2
[10,1,1]=>2
[9,3]=>1
[9,2,1]=>1
[9,1,1,1]=>1
[8,4]=>2
[8,3,1]=>2
[8,2,2]=>2
[8,2,1,1]=>2
[8,1,1,1,1]=>2
[7,5]=>1
[7,4,1]=>1
[7,3,2]=>1
[7,3,1,1]=>1
[7,2,2,1]=>1
[7,2,1,1,1]=>1
[7,1,1,1,1,1]=>1
[6,6]=>2
[6,5,1]=>2
[6,4,2]=>2
[6,4,1,1]=>2
[6,3,3]=>2
[6,3,2,1]=>2
[6,3,1,1,1]=>2
[6,2,2,2]=>2
[6,2,2,1,1]=>2
[6,2,1,1,1,1]=>2
[6,1,1,1,1,1,1]=>2
[5,5,2]=>1
[5,5,1,1]=>1
[5,4,3]=>1
[5,4,2,1]=>1
[5,4,1,1,1]=>1
[5,3,3,1]=>1
[5,3,2,2]=>1
[5,3,2,1,1]=>1
[5,3,1,1,1,1]=>1
[5,2,2,2,1]=>2
[5,2,2,1,1,1]=>1
[5,2,1,1,1,1,1]=>1
[5,1,1,1,1,1,1,1]=>1
[4,4,4]=>2
[4,4,3,1]=>2
[4,4,2,2]=>2
[4,4,2,1,1]=>2
[4,4,1,1,1,1]=>2
[4,3,3,2]=>2
[4,3,3,1,1]=>2
[4,3,2,2,1]=>2
[4,3,2,1,1,1]=>2
[4,3,1,1,1,1,1]=>2
[4,2,2,2,2]=>2
[4,2,2,2,1,1]=>2
[4,2,2,1,1,1,1]=>2
[4,2,1,1,1,1,1,1]=>2
[4,1,1,1,1,1,1,1,1]=>2
[3,3,3,3]=>1
[3,3,3,2,1]=>1
[3,3,3,1,1,1]=>1
[3,3,2,2,2]=>2
[3,3,2,2,1,1]=>1
[3,3,2,1,1,1,1]=>1
[3,3,1,1,1,1,1,1]=>1
[3,2,2,2,2,1]=>3
[3,2,2,2,1,1,1]=>1
[3,2,2,1,1,1,1,1]=>1
[3,2,1,1,1,1,1,1,1]=>1
[3,1,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,2]=>2
[2,2,2,2,2,1,1]=>2
[2,2,2,2,1,1,1,1]=>2
[2,2,2,1,1,1,1,1,1]=>2
[2,2,1,1,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
[5,4,3,1]=>1
[5,4,2,2]=>3
[5,4,2,1,1]=>1
[5,3,3,2]=>1
[5,3,3,1,1]=>1
[5,3,2,2,1]=>1
[4,4,3,2]=>2
[4,4,3,1,1]=>2
[4,4,2,2,1]=>2
[4,3,3,2,1]=>2
[5,4,3,2]=>1
[5,4,3,1,1]=>1
[5,4,2,2,1]=>3
[5,3,3,2,1]=>1
[4,4,3,2,1]=>2
[5,4,3,2,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of real roots of the characteristic polynomial of a linear recurrence associated with an integer partition.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Consider the recurrence $$f(n)=\sum_{p\in\lambda} f(n-p).$$ This statistic returns the number of distinct real roots of the associated characteristic polynomial.
For example, the partition $(2,1)$ corresponds to the recurrence $f(n)=f(n-1)+f(n-2)$ with associated characteristic polynomial $x^2-x-1$, which has two real roots.
Code
def statistic(m): """ Return the number of real roots of x^m_k = x^{m_k-m_1} + x^{m_k-m_2} + ... + 1 without multiplicities. """ if len(m) == 0: return None R.= PolynomialRing(ZZ) mk = max(m) eq = x^mk - sum(x^(mk-e) for e in m) return eq.number_of_real_roots()
Created
Apr 08, 2017 at 16:43 by Martin Rubey
Updated
Dec 30, 2017 at 22:57 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!