Identifier
- St000759: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>2
[2]=>1
[1,1]=>2
[3]=>1
[2,1]=>3
[1,1,1]=>2
[4]=>1
[3,1]=>2
[2,2]=>1
[2,1,1]=>3
[1,1,1,1]=>2
[5]=>1
[4,1]=>2
[3,2]=>1
[3,1,1]=>2
[2,2,1]=>3
[2,1,1,1]=>3
[1,1,1,1,1]=>2
[6]=>1
[5,1]=>2
[4,2]=>1
[4,1,1]=>2
[3,3]=>1
[3,2,1]=>4
[3,1,1,1]=>2
[2,2,2]=>1
[2,2,1,1]=>3
[2,1,1,1,1]=>3
[1,1,1,1,1,1]=>2
[7]=>1
[6,1]=>2
[5,2]=>1
[5,1,1]=>2
[4,3]=>1
[4,2,1]=>3
[4,1,1,1]=>2
[3,3,1]=>2
[3,2,2]=>1
[3,2,1,1]=>4
[3,1,1,1,1]=>2
[2,2,2,1]=>3
[2,2,1,1,1]=>3
[2,1,1,1,1,1]=>3
[1,1,1,1,1,1,1]=>2
[8]=>1
[7,1]=>2
[6,2]=>1
[6,1,1]=>2
[5,3]=>1
[5,2,1]=>3
[5,1,1,1]=>2
[4,4]=>1
[4,3,1]=>2
[4,2,2]=>1
[4,2,1,1]=>3
[4,1,1,1,1]=>2
[3,3,2]=>1
[3,3,1,1]=>2
[3,2,2,1]=>4
[3,2,1,1,1]=>4
[3,1,1,1,1,1]=>2
[2,2,2,2]=>1
[2,2,2,1,1]=>3
[2,2,1,1,1,1]=>3
[2,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1]=>2
[9]=>1
[8,1]=>2
[7,2]=>1
[7,1,1]=>2
[6,3]=>1
[6,2,1]=>3
[6,1,1,1]=>2
[5,4]=>1
[5,3,1]=>2
[5,2,2]=>1
[5,2,1,1]=>3
[5,1,1,1,1]=>2
[4,4,1]=>2
[4,3,2]=>1
[4,3,1,1]=>2
[4,2,2,1]=>3
[4,2,1,1,1]=>3
[4,1,1,1,1,1]=>2
[3,3,3]=>1
[3,3,2,1]=>4
[3,3,1,1,1]=>2
[3,2,2,2]=>1
[3,2,2,1,1]=>4
[3,2,1,1,1,1]=>4
[3,1,1,1,1,1,1]=>2
[2,2,2,2,1]=>3
[2,2,2,1,1,1]=>3
[2,2,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1]=>2
[10]=>1
[9,1]=>2
[8,2]=>1
[8,1,1]=>2
[7,3]=>1
[7,2,1]=>3
[7,1,1,1]=>2
[6,4]=>1
[6,3,1]=>2
[6,2,2]=>1
[6,2,1,1]=>3
[6,1,1,1,1]=>2
[5,5]=>1
[5,4,1]=>2
[5,3,2]=>1
[5,3,1,1]=>2
[5,2,2,1]=>3
[5,2,1,1,1]=>3
[5,1,1,1,1,1]=>2
[4,4,2]=>1
[4,4,1,1]=>2
[4,3,3]=>1
[4,3,2,1]=>5
[4,3,1,1,1]=>2
[4,2,2,2]=>1
[4,2,2,1,1]=>3
[4,2,1,1,1,1]=>3
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>2
[3,3,2,2]=>1
[3,3,2,1,1]=>4
[3,3,1,1,1,1]=>2
[3,2,2,2,1]=>4
[3,2,2,1,1,1]=>4
[3,2,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1]=>2
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>3
[2,2,2,1,1,1,1]=>3
[2,2,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1,1]=>2
[11]=>1
[10,1]=>2
[9,2]=>1
[9,1,1]=>2
[8,3]=>1
[8,2,1]=>3
[8,1,1,1]=>2
[7,4]=>1
[7,3,1]=>2
[7,2,2]=>1
[7,2,1,1]=>3
[7,1,1,1,1]=>2
[6,5]=>1
[6,4,1]=>2
[6,3,2]=>1
[6,3,1,1]=>2
[6,2,2,1]=>3
[6,2,1,1,1]=>3
[6,1,1,1,1,1]=>2
[5,5,1]=>2
[5,4,2]=>1
[5,4,1,1]=>2
[5,3,3]=>1
[5,3,2,1]=>4
[5,3,1,1,1]=>2
[5,2,2,2]=>1
[5,2,2,1,1]=>3
[5,2,1,1,1,1]=>3
[5,1,1,1,1,1,1]=>2
[4,4,3]=>1
[4,4,2,1]=>3
[4,4,1,1,1]=>2
[4,3,3,1]=>2
[4,3,2,2]=>1
[4,3,2,1,1]=>5
[4,3,1,1,1,1]=>2
[4,2,2,2,1]=>3
[4,2,2,1,1,1]=>3
[4,2,1,1,1,1,1]=>3
[4,1,1,1,1,1,1,1]=>2
[3,3,3,2]=>1
[3,3,3,1,1]=>2
[3,3,2,2,1]=>4
[3,3,2,1,1,1]=>4
[3,3,1,1,1,1,1]=>2
[3,2,2,2,2]=>1
[3,2,2,2,1,1]=>4
[3,2,2,1,1,1,1]=>4
[3,2,1,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1,1]=>2
[2,2,2,2,2,1]=>3
[2,2,2,2,1,1,1]=>3
[2,2,2,1,1,1,1,1]=>3
[2,2,1,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1,1,1]=>2
[12]=>1
[11,1]=>2
[10,2]=>1
[10,1,1]=>2
[9,3]=>1
[9,2,1]=>3
[9,1,1,1]=>2
[8,4]=>1
[8,3,1]=>2
[8,2,2]=>1
[8,2,1,1]=>3
[8,1,1,1,1]=>2
[7,5]=>1
[7,4,1]=>2
[7,3,2]=>1
[7,3,1,1]=>2
[7,2,2,1]=>3
[7,2,1,1,1]=>3
[7,1,1,1,1,1]=>2
[6,6]=>1
[6,5,1]=>2
[6,4,2]=>1
[6,4,1,1]=>2
[6,3,3]=>1
[6,3,2,1]=>4
[6,3,1,1,1]=>2
[6,2,2,2]=>1
[6,2,2,1,1]=>3
[6,2,1,1,1,1]=>3
[6,1,1,1,1,1,1]=>2
[5,5,2]=>1
[5,5,1,1]=>2
[5,4,3]=>1
[5,4,2,1]=>3
[5,4,1,1,1]=>2
[5,3,3,1]=>2
[5,3,2,2]=>1
[5,3,2,1,1]=>4
[5,3,1,1,1,1]=>2
[5,2,2,2,1]=>3
[5,2,2,1,1,1]=>3
[5,2,1,1,1,1,1]=>3
[5,1,1,1,1,1,1,1]=>2
[4,4,4]=>1
[4,4,3,1]=>2
[4,4,2,2]=>1
[4,4,2,1,1]=>3
[4,4,1,1,1,1]=>2
[4,3,3,2]=>1
[4,3,3,1,1]=>2
[4,3,2,2,1]=>5
[4,3,2,1,1,1]=>5
[4,3,1,1,1,1,1]=>2
[4,2,2,2,2]=>1
[4,2,2,2,1,1]=>3
[4,2,2,1,1,1,1]=>3
[4,2,1,1,1,1,1,1]=>3
[4,1,1,1,1,1,1,1,1]=>2
[3,3,3,3]=>1
[3,3,3,2,1]=>4
[3,3,3,1,1,1]=>2
[3,3,2,2,2]=>1
[3,3,2,2,1,1]=>4
[3,3,2,1,1,1,1]=>4
[3,3,1,1,1,1,1,1]=>2
[3,2,2,2,2,1]=>4
[3,2,2,2,1,1,1]=>4
[3,2,2,1,1,1,1,1]=>4
[3,2,1,1,1,1,1,1,1]=>4
[3,1,1,1,1,1,1,1,1,1]=>2
[2,2,2,2,2,2]=>1
[2,2,2,2,2,1,1]=>3
[2,2,2,2,1,1,1,1]=>3
[2,2,2,1,1,1,1,1,1]=>3
[2,2,1,1,1,1,1,1,1,1]=>3
[2,1,1,1,1,1,1,1,1,1,1]=>3
[1,1,1,1,1,1,1,1,1,1,1,1]=>2
[8,5]=>1
[7,5,1]=>2
[7,4,2]=>1
[5,5,3]=>1
[5,4,4]=>1
[5,4,3,1]=>2
[5,4,2,2]=>1
[5,4,2,1,1]=>3
[5,4,1,1,1,1]=>2
[5,3,3,2]=>1
[5,3,3,1,1]=>2
[5,3,2,2,1]=>4
[5,3,2,1,1,1]=>4
[4,4,4,1]=>2
[4,4,3,2]=>1
[4,4,3,1,1]=>2
[4,4,2,2,1]=>3
[4,3,3,3]=>1
[4,3,3,2,1]=>5
[3,3,3,3,1]=>2
[3,3,3,2,2]=>1
[3,3,2,2,2,1]=>4
[9,5]=>1
[8,5,1]=>2
[7,5,2]=>1
[7,4,3]=>1
[6,4,4]=>1
[6,2,2,2,2]=>1
[5,5,4]=>1
[5,5,1,1,1,1]=>2
[5,4,3,2]=>1
[5,4,3,1,1]=>2
[5,4,2,2,1]=>3
[5,4,2,1,1,1]=>3
[5,3,3,2,1]=>4
[5,3,2,2,2]=>1
[5,2,2,2,2,1]=>3
[4,4,4,2]=>1
[4,4,3,3]=>1
[4,4,3,2,1]=>5
[4,3,2,2,2,1]=>5
[3,3,3,3,2]=>1
[3,3,3,3,1,1]=>2
[9,5,1]=>2
[8,5,2]=>1
[7,5,3]=>1
[6,5,4]=>1
[6,5,1,1,1,1]=>2
[6,3,3,3]=>1
[6,2,2,2,2,1]=>3
[5,5,5]=>1
[5,4,3,2,1]=>6
[5,4,3,1,1,1]=>2
[5,3,2,2,2,1]=>4
[4,4,4,3]=>1
[4,4,4,1,1,1]=>2
[3,3,3,3,3]=>1
[3,3,3,3,2,1]=>4
[8,5,3]=>1
[7,5,3,1]=>2
[5,5,3,3]=>1
[5,5,2,2,2]=>1
[5,4,3,2,1,1]=>6
[5,4,2,2,2,1]=>3
[4,4,4,4]=>1
[4,4,4,2,2]=>1
[4,3,3,3,2,1]=>5
[8,6,3]=>1
[6,5,3,3]=>1
[6,5,2,2,2]=>1
[6,4,4,3]=>1
[6,4,4,1,1,1]=>2
[6,3,3,3,2]=>1
[6,3,3,3,1,1]=>2
[5,5,4,3]=>1
[5,5,4,1,1,1]=>2
[5,5,2,2,2,1]=>3
[5,4,3,2,2,1]=>6
[5,3,3,3,2,1]=>4
[4,4,4,3,2]=>1
[4,4,4,3,1,1]=>2
[4,4,4,2,2,1]=>3
[4,4,4,3,2,1]=>5
[5,4,3,3,2,1]=>6
[6,3,3,3,2,1]=>4
[6,5,2,2,2,1]=>3
[5,5,3,3,1,1]=>2
[6,5,4,1,1,1]=>2
[5,5,3,3,2]=>1
[5,5,4,2,2]=>1
[6,4,4,2,2]=>1
[6,5,4,3]=>1
[9,6,3]=>1
[8,6,4]=>1
[5,4,4,3,2,1]=>6
[5,5,3,3,2,1]=>4
[5,5,4,2,2,1]=>3
[6,4,4,2,2,1]=>3
[5,5,4,3,1,1]=>2
[6,4,4,3,1,1]=>2
[6,5,3,3,1,1]=>2
[5,5,4,3,2]=>1
[6,4,4,3,2]=>1
[6,5,3,3,2]=>1
[6,5,4,2,2]=>1
[6,5,4,3,1]=>2
[6,5,4,1,1,1,1]=>2
[9,6,4]=>1
[8,5,4,2]=>1
[8,5,5,1]=>2
[5,5,4,3,2,1]=>6
[6,4,4,3,2,1]=>5
[6,5,3,3,2,1]=>4
[6,5,4,2,2,1]=>3
[6,5,4,3,1,1]=>2
[6,5,4,3,2]=>1
[6,5,2,2,2,2,1]=>3
[6,5,4,2,1,1,1]=>3
[7,5,4,3,1]=>2
[8,6,4,2]=>1
[10,6,4]=>1
[10,7,3]=>1
[9,7,4]=>1
[9,5,5,1]=>2
[6,5,4,3,2,1]=>7
[6,3,3,3,3,2,1]=>4
[6,5,3,2,2,2,1]=>4
[6,5,4,3,1,1,1]=>2
[11,7,3]=>1
[4,4,4,4,3,2,1]=>5
[6,4,3,3,3,2,1]=>5
[6,5,4,2,2,2,1]=>3
[6,5,4,3,2,1,1]=>7
[9,6,4,3]=>1
[5,4,4,4,3,2,1]=>6
[6,5,3,3,3,2,1]=>4
[6,5,4,3,2,2,1]=>7
[9,6,5,3]=>1
[8,6,5,3,1]=>2
[6,4,4,4,3,2,1]=>5
[6,5,4,3,3,2,1]=>7
[11,7,5,1]=>2
[9,7,5,3]=>1
[5,5,5,4,3,2,1]=>6
[6,5,4,4,3,2,1]=>7
[9,7,5,3,1]=>2
[10,7,5,3]=>1
[6,5,5,4,3,2,1]=>7
[9,7,5,4,1]=>2
[6,6,5,4,3,2,1]=>7
[7,6,5,4,3,2]=>1
[7,6,5,4,3,2,1]=>8
[7,6,5,4,3,1,1,1]=>2
[10,7,6,4,1]=>2
[9,7,6,4,2]=>1
[10,8,5,4,1]=>2
[7,6,5,4,3,2,1,1]=>8
[7,6,5,4,2,2,2,1]=>3
[10,8,6,4,1]=>2
[9,7,5,5,3,1]=>2
[7,6,5,4,3,2,2,1]=>8
[7,6,5,3,3,3,2,1]=>4
[11,8,6,4,1]=>2
[10,8,6,4,2]=>1
[7,6,5,4,3,3,2,1]=>8
[7,6,4,4,4,3,2,1]=>5
[11,8,6,5,1]=>2
[7,6,5,4,4,3,2,1]=>8
[7,5,5,5,4,3,2,1]=>6
[7,6,5,5,4,3,2,1]=>8
[6,6,6,5,4,3,2,1]=>7
[7,6,6,5,4,3,2,1]=>8
[12,9,7,5,1]=>2
[7,7,6,5,4,3,2,1]=>8
[13,9,7,5,1]=>2
[11,9,7,5,3,1]=>2
[11,8,7,5,4,1]=>2
[8,7,6,5,4,3,2,1]=>9
[8,7,6,5,4,3,2,1,1]=>9
[8,7,6,5,4,3,2,2,1]=>9
[8,7,6,5,4,3,3,2,1]=>9
[8,7,6,5,4,4,3,2,1]=>9
[11,9,7,5,5,3]=>1
[8,7,6,5,5,4,3,2,1]=>9
[8,7,6,6,5,4,3,2,1]=>9
[8,7,7,6,5,4,3,2,1]=>9
[8,8,7,6,5,4,3,2,1]=>9
[9,8,7,6,5,4,3,2,1]=>10
[11,9,7,7,5,3,3]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The smallest missing part in an integer partition.
In [3], this is referred to as the mex, the minimal excluded part of the partition.
For compositions, this is studied in [sec.3.2., 1].
In [3], this is referred to as the mex, the minimal excluded part of the partition.
For compositions, this is studied in [sec.3.2., 1].
References
[1] Hitczenko, Paweł, Louchard, G. Distinctness of compositions of an integer: a probabilistic analysis MathSciNet:1871561
[2] Triangle read by rows: T(n,k) is the number of partitions of n having least gap k. OEIS:A264401
[3] Hopkins, B., Sellers, J. A., Yee, A. J. Combinatorial Perspectives on the Crank and Mex Partition Statistics arXiv:2108.09414
[2] Triangle read by rows: T(n,k) is the number of partitions of n having least gap k. OEIS:A264401
[3] Hopkins, B., Sellers, J. A., Yee, A. J. Combinatorial Perspectives on the Crank and Mex Partition Statistics arXiv:2108.09414
Code
def statistic(pi): return min(set(range(1,len(pi)+2)).difference(set(pi)))
Created
Apr 08, 2017 at 22:40 by Martin Rubey
Updated
Aug 24, 2021 at 12:59 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!