Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000770: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => 1
([],4) => [1,1,1,1] => [1,1,1] => 1
([(2,3)],4) => [2,1,1] => [1,1] => 1
([(0,3),(1,2)],4) => [2,2] => [2] => 2
([],5) => [1,1,1,1,1] => [1,1,1,1] => 1
([(3,4)],5) => [2,1,1,1] => [1,1,1] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 4
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => 2
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => 2
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 1
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 5
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 4
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => 2
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 4
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 2
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 1
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 6
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 5
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 4
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 5
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 4
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 4
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 5
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 4
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 4
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 3
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 5
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 3
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 4
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => 3
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 3
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 2
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 3
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => 5
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 3
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The major index of an integer partition when read from bottom to top.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
This is the sum of the positions of the corners of the shape of an integer partition when reading from bottom to top.
For example, the partition $\lambda = (8,6,6,4,3,3)$ has corners at positions 3,6,9, and 13, giving a major index of 31.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!