Identifier
-
Mp00050:
Ordered trees
—to binary tree: right brother = right child⟶
Binary trees
Mp00017: Binary trees —to 312-avoiding permutation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000771: Graphs ⟶ ℤ
Values
[[]] => [.,.] => [1] => ([],1) => 1
[[],[]] => [.,[.,.]] => [2,1] => ([(0,1)],2) => 1
[[],[],[]] => [.,[.,[.,.]]] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => 2
[[],[[]]] => [.,[[.,.],.]] => [2,3,1] => ([(0,2),(1,2)],3) => 1
[[],[],[],[]] => [.,[.,[.,[.,.]]]] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[[],[],[[]]] => [.,[.,[[.,.],.]]] => [3,4,2,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
[[],[[]],[]] => [.,[[.,.],[.,.]]] => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[[],[[],[]]] => [.,[[.,[.,.]],.]] => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[[],[[[]]]] => [.,[[[.,.],.],.]] => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => 2
[[],[],[],[],[]] => [.,[.,[.,[.,[.,.]]]]] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[[],[],[],[[]]] => [.,[.,[.,[[.,.],.]]]] => [4,5,3,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
[[],[],[[]],[]] => [.,[.,[[.,.],[.,.]]]] => [3,5,4,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[],[[],[]]] => [.,[.,[[.,[.,.]],.]]] => [4,3,5,2,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[],[[[]]]] => [.,[.,[[[.,.],.],.]]] => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[]],[],[]] => [.,[[.,.],[.,[.,.]]]] => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[]],[[]]] => [.,[[.,.],[[.,.],.]]] => [2,4,5,3,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[],[[],[]],[]] => [.,[[.,[.,.]],[.,.]]] => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2
[[],[[[]]],[]] => [.,[[[.,.],.],[.,.]]] => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[],[],[]]] => [.,[[.,[.,[.,.]]],.]] => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[],[[]]]] => [.,[[.,[[.,.],.]],.]] => [3,4,2,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[[],[[[]],[]]] => [.,[[[.,.],[.,.]],.]] => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[[],[]]]] => [.,[[[.,[.,.]],.],.]] => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[[],[[[[]]]]] => [.,[[[[.,.],.],.],.]] => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[[],[],[],[],[],[]] => [.,[.,[.,[.,[.,[.,.]]]]]] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[[],[],[],[],[[]]] => [.,[.,[.,[.,[[.,.],.]]]]] => [5,6,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
[[],[],[],[[]],[]] => [.,[.,[.,[[.,.],[.,.]]]]] => [4,6,5,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[],[[],[]]] => [.,[.,[.,[[.,[.,.]],.]]]] => [5,4,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[],[[[]]]] => [.,[.,[.,[[[.,.],.],.]]]] => [4,5,6,3,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[],[[]],[],[]] => [.,[.,[[.,.],[.,[.,.]]]]] => [3,6,5,4,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[]],[[]]] => [.,[.,[[.,.],[[.,.],.]]]] => [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[],[]],[]] => [.,[.,[[.,[.,.]],[.,.]]]] => [4,3,6,5,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[[]]],[]] => [.,[.,[[[.,.],.],[.,.]]]] => [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[],[],[]]] => [.,[.,[[.,[.,[.,.]]],.]]] => [5,4,3,6,2,1] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[],[[]]]] => [.,[.,[[.,[[.,.],.]],.]]] => [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[[]],[]]] => [.,[.,[[[.,.],[.,.]],.]]] => [3,5,4,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[[],[]]]] => [.,[.,[[[.,[.,.]],.],.]]] => [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[],[[[[]]]]] => [.,[.,[[[[.,.],.],.],.]]] => [3,4,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[]],[],[],[]] => [.,[[.,.],[.,[.,[.,.]]]]] => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[]],[],[[]]] => [.,[[.,.],[.,[[.,.],.]]]] => [2,5,6,4,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[]],[[]],[]] => [.,[[.,.],[[.,.],[.,.]]]] => [2,4,6,5,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[],[[]],[[],[]]] => [.,[[.,.],[[.,[.,.]],.]]] => [2,5,4,6,3,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[],[[]],[[[]]]] => [.,[[.,.],[[[.,.],.],.]]] => [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[]],[],[]] => [.,[[.,[.,.]],[.,[.,.]]]] => [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[]]],[],[]] => [.,[[[.,.],.],[.,[.,.]]]] => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[]],[[]]] => [.,[[.,[.,.]],[[.,.],.]]] => [3,2,5,6,4,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[],[[[]]],[[]]] => [.,[[[.,.],.],[[.,.],.]]] => [2,3,5,6,4,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[],[]],[]] => [.,[[.,[.,[.,.]]],[.,.]]] => [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[[]]],[]] => [.,[[.,[[.,.],.]],[.,.]]] => [3,4,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[],[[[]],[]],[]] => [.,[[[.,.],[.,.]],[.,.]]] => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
[[],[[[],[]]],[]] => [.,[[[.,[.,.]],.],[.,.]]] => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
[[],[[[[]]]],[]] => [.,[[[[.,.],.],.],[.,.]]] => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[],[],[],[]]] => [.,[[.,[.,[.,[.,.]]]],.]] => [5,4,3,2,6,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[],[],[[]]]] => [.,[[.,[.,[[.,.],.]]],.]] => [4,5,3,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[],[[]],[]]] => [.,[[.,[[.,.],[.,.]]],.]] => [3,5,4,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[],[[],[[],[]]]] => [.,[[.,[[.,[.,.]],.]],.]] => [4,3,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[[],[[],[[[]]]]] => [.,[[.,[[[.,.],.],.]],.]] => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[]],[],[]]] => [.,[[[.,.],[.,[.,.]]],.]] => [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[]],[[]]]] => [.,[[[.,.],[[.,.],.]],.]] => [2,4,5,3,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[],[]],[]]] => [.,[[[.,[.,.]],[.,.]],.]] => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
[[],[[[[]]],[]]] => [.,[[[[.,.],.],[.,.]],.]] => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[[],[],[]]]] => [.,[[[.,[.,[.,.]]],.],.]] => [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[],[[]]]]] => [.,[[[.,[[.,.],.]],.],.]] => [3,4,2,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[[],[[[[]],[]]]] => [.,[[[[.,.],[.,.]],.],.]] => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[[[],[]]]]] => [.,[[[[.,[.,.]],.],.],.]] => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
[[],[[[[[]]]]]] => [.,[[[[[.,.],.],.],.],.]] => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
[[],[],[],[],[],[],[]] => [.,[.,[.,[.,[.,[.,[.,.]]]]]]] => [7,6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 6
[[],[],[],[],[],[[]]] => [.,[.,[.,[.,[.,[[.,.],.]]]]]] => [6,7,5,4,3,2,1] => ([(0,2),(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 5
[[],[],[],[],[[]],[]] => [.,[.,[.,[.,[[.,.],[.,.]]]]]] => [5,7,6,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[],[[],[]]] => [.,[.,[.,[.,[[.,[.,.]],.]]]]] => [6,5,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[],[[[]]]] => [.,[.,[.,[.,[[[.,.],.],.]]]]] => [5,6,7,4,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 4
[[],[],[],[[]],[],[]] => [.,[.,[.,[[.,.],[.,[.,.]]]]]] => [4,7,6,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[]],[[]]] => [.,[.,[.,[[.,.],[[.,.],.]]]]] => [4,6,7,5,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[],[]],[]] => [.,[.,[.,[[.,[.,.]],[.,.]]]]] => [5,4,7,6,3,2,1] => ([(0,3),(0,4),(0,5),(0,6),(1,2),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[[]]],[]] => [.,[.,[.,[[[.,.],.],[.,.]]]]] => [4,5,7,6,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[],[],[]]] => [.,[.,[.,[[.,[.,[.,.]]],.]]]] => [6,5,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[],[[]]]] => [.,[.,[.,[[.,[[.,.],.]],.]]]] => [5,6,4,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[[]],[]]] => [.,[.,[.,[[[.,.],[.,.]],.]]]] => [4,6,5,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[[],[]]]] => [.,[.,[.,[[[.,[.,.]],.],.]]]] => [5,4,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[],[[[[]]]]] => [.,[.,[.,[[[[.,.],.],.],.]]]] => [4,5,6,7,3,2,1] => ([(0,4),(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[]],[],[],[]] => [.,[.,[[.,.],[.,[.,[.,.]]]]]] => [3,7,6,5,4,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[]],[],[[]]] => [.,[.,[[.,.],[.,[[.,.],.]]]]] => [3,6,7,5,4,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[]],[[]],[]] => [.,[.,[[.,.],[[.,.],[.,.]]]]] => [3,5,7,6,4,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[]],[[],[]]] => [.,[.,[[.,.],[[.,[.,.]],.]]]] => [3,6,5,7,4,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[]],[[[]]]] => [.,[.,[[.,.],[[[.,.],.],.]]]] => [3,5,6,7,4,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[]],[],[]] => [.,[.,[[.,[.,.]],[.,[.,.]]]]] => [4,3,7,6,5,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[]]],[],[]] => [.,[.,[[[.,.],.],[.,[.,.]]]]] => [3,4,7,6,5,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[]],[[]]] => [.,[.,[[.,[.,.]],[[.,.],.]]]] => [4,3,6,7,5,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[]]],[[]]] => [.,[.,[[[.,.],.],[[.,.],.]]]] => [3,4,6,7,5,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[],[]],[]] => [.,[.,[[.,[.,[.,.]]],[.,.]]]] => [5,4,3,7,6,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[[]]],[]] => [.,[.,[[.,[[.,.],.]],[.,.]]]] => [4,5,3,7,6,2,1] => ([(0,1),(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[]],[]],[]] => [.,[.,[[[.,.],[.,.]],[.,.]]]] => [3,5,4,7,6,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[],[]]],[]] => [.,[.,[[[.,[.,.]],.],[.,.]]]] => [4,3,5,7,6,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[[]]]],[]] => [.,[.,[[[[.,.],.],.],[.,.]]]] => [3,4,5,7,6,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[],[],[],[]]] => [.,[.,[[.,[.,[.,[.,.]]]],.]]] => [6,5,4,3,7,2,1] => ([(0,5),(0,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 3
[[],[],[[],[],[[]]]] => [.,[.,[[.,[.,[[.,.],.]]],.]]] => [5,6,4,3,7,2,1] => ([(0,5),(0,6),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[[]],[]]] => [.,[.,[[.,[[.,.],[.,.]]],.]]] => [4,6,5,3,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[[],[]]]] => [.,[.,[[.,[[.,[.,.]],.]],.]]] => [5,4,6,3,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[],[[[]]]]] => [.,[.,[[.,[[[.,.],.],.]],.]]] => [4,5,6,3,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[]],[],[]]] => [.,[.,[[[.,.],[.,[.,.]]],.]]] => [3,6,5,4,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[]],[[]]]] => [.,[.,[[[.,.],[[.,.],.]],.]]] => [3,5,6,4,7,2,1] => ([(0,5),(0,6),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
[[],[],[[[],[]],[]]] => [.,[.,[[[.,[.,.]],[.,.]],.]]] => [4,3,6,5,7,2,1] => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 2
>>> Load all 197 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Map
to binary tree: right brother = right child
Description
Return a binary tree of size $n-1$ (where $n$ is the size of an ordered tree $t$) obtained from $t$ by the following recursive rule:
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
- if $x$ is the right brother of $y$ in $t$, then $x$ becomes the right child of $y$;
- if $x$ is the first child of $y$ in $t$, then $x$ becomes the left child of $y$,
and removing the root of $t$.
Map
to 312-avoiding permutation
Description
Return a 312-avoiding permutation corresponding to a binary tree.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the minimal element of this Sylvester class.
The linear extensions of a binary tree form an interval of the weak order called the Sylvester class of the tree. This permutation is the minimal element of this Sylvester class.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!