Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000771: Graphs ⟶ ℤ
Values
{{1}} => [1] => ([],1) => ([],1) => 1
{{1,2}} => [2,1] => ([(0,1)],2) => ([(0,1)],2) => 1
{{1},{2}} => [1,2] => ([],2) => ([],1) => 1
{{1,2,3}} => [2,3,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 1
{{1,3},{2}} => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
{{1},{2},{3}} => [1,2,3] => ([],3) => ([],1) => 1
{{1,2,3,4}} => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 1
{{1,2,4},{3}} => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,4},{2}} => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3},{2,4}} => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => 1
{{1,4},{2,3}} => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
{{1,4},{2},{3}} => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
{{1},{2},{3},{4}} => [1,2,3,4] => ([],4) => ([],1) => 1
{{1,2,3,4,5}} => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 1
{{1,2,3,5},{4}} => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,4,5},{3}} => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,4},{3,5}} => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 1
{{1,2,5},{3,4}} => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2,5},{3},{4}} => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,4,5},{2}} => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,4},{2,5}} => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,5},{2,4}} => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 2
{{1,3},{2,4,5}} => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 1
{{1,3,5},{2},{4}} => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2
{{1,3},{2,5},{4}} => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
{{1,4,5},{2,3}} => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4},{2,3,5}} => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,5},{2,3,4}} => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
{{1,5},{2,3},{4}} => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4,5},{2},{3}} => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,4},{2,5},{3}} => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 2
{{1,4},{2},{3,5}} => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
{{1,5},{2,4},{3}} => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,5},{2},{3,4}} => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 2
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => ([],5) => ([],1) => 1
{{1,2,3,4,5,6}} => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 1
{{1,2,3,4,6},{5}} => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,3,5,6},{4}} => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,3,5},{4,6}} => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 1
{{1,2,3,6},{4,5}} => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2,3,6},{4},{5}} => [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,4,5,6},{3}} => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,4,5},{3,6}} => [2,4,6,5,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
{{1,2,4,6},{3,5}} => [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,4},{3,5,6}} => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
{{1,2,4,6},{3},{5}} => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
{{1,2,4},{3,6},{5}} => [2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 2
{{1,2,5,6},{3,4}} => [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2,5},{3,4,6}} => [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
{{1,2,6},{3,4,5}} => [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,2,6},{3,4},{5}} => [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,5,6},{3},{4}} => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,2,5},{3,6},{4}} => [2,5,6,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1
{{1,2,5},{3},{4,6}} => [2,5,3,6,1,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
{{1,2,6},{3,5},{4}} => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,2,6},{3},{4,5}} => [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,2,6},{3},{4},{5}} => [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,4,5,6},{2}} => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,4,5},{2,6}} => [3,6,4,5,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,4,6},{2,5}} => [3,5,4,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3,4},{2,5,6}} => [3,5,4,1,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
{{1,3,4,6},{2},{5}} => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
{{1,3,4},{2,6},{5}} => [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,5,6},{2,4}} => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,3,5},{2,4,6}} => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 1
{{1,3,6},{2,4,5}} => [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3},{2,4,5,6}} => [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 1
{{1,3,6},{2,4},{5}} => [3,4,6,2,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,3},{2,4,6},{5}} => [3,4,1,6,5,2] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
{{1,3,5,6},{2},{4}} => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 2
{{1,3,5},{2,6},{4}} => [3,6,5,4,1,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3,5},{2},{4,6}} => [3,2,5,6,1,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
{{1,3,6},{2,5},{4}} => [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,3},{2,5,6},{4}} => [3,5,1,4,6,2] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
{{1,3},{2,5},{4,6}} => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 2
{{1,3,6},{2},{4,5}} => [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,3},{2,6},{4,5}} => [3,6,1,5,4,2] => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,3,6},{2},{4},{5}} => [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2
{{1,3},{2,6},{4},{5}} => [3,6,1,4,5,2] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
{{1,4,5,6},{2,3}} => [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4,5},{2,3,6}} => [4,3,6,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 2
{{1,4,6},{2,3,5}} => [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4},{2,3,5,6}} => [4,3,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
{{1,4,6},{2,3},{5}} => [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,4},{2,3,6},{5}} => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2
{{1,5,6},{2,3,4}} => [5,3,4,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,5},{2,3,4,6}} => [5,3,4,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,6},{2,3,4,5}} => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
{{1,6},{2,3,4},{5}} => [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,5,6},{2,3},{4}} => [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,5},{2,3,6},{4}} => [5,3,6,4,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,5},{2,3},{4,6}} => [5,3,2,6,1,4] => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
{{1,6},{2,3,5},{4}} => [6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
{{1,6},{2,3},{4,5}} => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
{{1,6},{2,3},{4},{5}} => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4,5,6},{2},{3}} => [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
{{1,4,5},{2,6},{3}} => [4,6,3,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 1
{{1,4,5},{2},{3,6}} => [4,2,6,5,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 2
{{1,4,6},{2,5},{3}} => [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,4},{2,5,6},{3}} => [4,5,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1
>>> Load all 586 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums 0, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
(4−1−2−1−14−1−2−2−14−1−1−2−14).
Its eigenvalues are 0,4,4,6, so the statistic is 2.
The path on four vertices has eigenvalues 0,4.7…,6,9.2… and therefore statistic 1.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
For a permutation of {1,…,n}, this is the graph with vertices {1,…,n}, where (i,j) is an edge if and only if it is an inversion of the permutation.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let G=(V,E) be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods {Nv|v∈V} of G, and has an edge (Na,Nb) between two vertices if and only if (a,b) is an edge of G. This is well-defined, because if Na=Nc and Nb=Nd, then (a,b)∈E if and only if (c,d)∈E.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Let G=(V,E) be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods {Nv|v∈V} of G, and has an edge (Na,Nb) between two vertices if and only if (a,b) is an edge of G. This is well-defined, because if Na=Nc and Nb=Nd, then (a,b)∈E if and only if (c,d)∈E.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!