Identifier
Values
[.,.] => ([],1) => ([],1) => ([],1) => 1
[.,[.,.]] => ([(0,1)],2) => ([],2) => ([],1) => 1
[[.,.],.] => ([(0,1)],2) => ([],2) => ([],1) => 1
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 1
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 1
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 1
[[[.,.],.],.] => ([(0,2),(2,1)],3) => ([],3) => ([],1) => 1
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => ([],4) => ([],1) => 1
[.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => ([],1) => 1
[.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[[[[[.,.],.],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[.,[.,[.,[.,.]]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[.,[.,[[.,.],.]]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[.,[[.,[.,.]],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[.,[[[.,.],.],.]]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[[.,[.,[.,.]]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[[.,[[.,.],.]],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[[[.,[.,.]],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[.,[[[[.,.],.],.],.]],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[.,[.,[.,[.,.]]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[.,[.,[[.,.],.]]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[.,[[.,[.,.]],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[.,[[[.,.],.],.]],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[[.,[.,[.,.]]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[[.,[[.,.],.]],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[[[.,[.,.]],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[[[[[[.,.],.],.],.],.],.] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => ([],1) => 1
[.,[.,[.,[.,[.,[.,[.,.]]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[.,[.,[[.,.],.]]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[.,[[.,[.,.]],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[.,[[[.,.],.],.]]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[[.,[.,[.,.]]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[[.,[[.,.],.]],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[[[.,[.,.]],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[.,[[[[.,.],.],.],.]]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[.,[.,[.,[.,.]]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[.,[.,[[.,.],.]]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[.,[[.,[.,.]],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[.,[[[.,.],.],.]],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[[.,[.,[.,.]]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[[.,[[.,.],.]],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[[[.,[.,.]],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[.,[[[[[.,.],.],.],.],.]]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[.,[.,[.,[.,.]]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[.,[.,[[.,.],.]]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[.,[[.,[.,.]],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[.,[[[.,.],.],.]]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[[.,[.,[.,.]]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[[.,[[.,.],.]],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[[[.,[.,.]],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[.,[[[[.,.],.],.],.]],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[.,[.,[.,[.,.]]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[.,[.,[[.,.],.]]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[.,[[.,[.,.]],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[.,[[[.,.],.],.]],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[[.,[.,[.,.]]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[[.,[[.,.],.]],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[[[.,[.,.]],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[.,[[[[[[.,.],.],.],.],.],.]] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[[.,[.,[.,[.,[.,[.,.]]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[[.,[.,[.,[.,[[.,.],.]]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[[.,[.,[.,[[.,[.,.]],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[[.,[.,[.,[[[.,.],.],.]]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[[.,[.,[[.,[.,[.,.]]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
[[.,[.,[[.,[[.,.],.]],.]]],.] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => ([],1) => 1
>>> Load all 127 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The largest multiplicity of a distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $2$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore statistic $1$.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Map
incomparability graph
Description
The incomparability graph of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!