Identifier
Values
([(0,1)],2) => ([(0,1)],2) => ([],1) => ([],1) => 1
([(1,2)],3) => ([(1,2)],3) => ([],1) => ([],1) => 1
([(2,3)],4) => ([(2,3)],4) => ([],1) => ([],1) => 1
([(0,3),(1,2)],4) => ([(0,3),(1,2)],4) => ([],2) => ([(0,1)],2) => 1
([(3,4)],5) => ([(3,4)],5) => ([],1) => ([],1) => 1
([(1,4),(2,3)],5) => ([(1,4),(2,3)],5) => ([],2) => ([(0,1)],2) => 1
([(0,1),(2,4),(3,4)],5) => ([(0,1),(2,4),(3,4)],5) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 1
([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
([(4,5)],6) => ([(4,5)],6) => ([],1) => ([],1) => 1
([(2,5),(3,4)],6) => ([(2,5),(3,4)],6) => ([],2) => ([(0,1)],2) => 1
([(1,2),(3,5),(4,5)],6) => ([(1,2),(3,5),(4,5)],6) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 1
([(0,1),(2,5),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,4),(3,4)],6) => ([(0,3),(1,2)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
([(0,5),(1,4),(2,3)],6) => ([(0,5),(1,4),(2,3)],6) => ([],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(1,5),(2,4),(3,4),(3,5)],6) => ([(1,5),(2,4),(3,4),(3,5)],6) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
([(0,1),(2,5),(3,4),(4,5)],6) => ([(0,1),(2,5),(3,4),(4,5)],6) => ([(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(3,4),(3,5),(4,5)],6) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 1
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 2
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 1
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,6),(2,3),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => 1
([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 1
([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => 1
([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,5),(0,6),(1,2),(1,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,3),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => 2
([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)],6) => 4
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(1,6),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,3),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,5),(4,5),(5,6)],7) => 1
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(5,6)],7) => ([(5,6)],7) => ([],1) => ([],1) => 1
([(3,6),(4,5)],7) => ([(3,6),(4,5)],7) => ([],2) => ([(0,1)],2) => 1
([(2,3),(4,6),(5,6)],7) => ([(2,3),(4,6),(5,6)],7) => ([(1,2)],3) => ([(0,2),(1,2)],3) => 1
([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
([(1,6),(2,6),(3,5),(4,5)],7) => ([(1,6),(2,6),(3,5),(4,5)],7) => ([(0,3),(1,2)],4) => ([(0,2),(0,3),(1,2),(1,3)],4) => 2
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(1,6),(2,5),(3,4)],7) => ([(1,6),(2,5),(3,4)],7) => ([],3) => ([(0,1),(0,2),(1,2)],3) => 2
([(2,6),(3,5),(4,5),(4,6)],7) => ([(2,6),(3,5),(4,5),(4,6)],7) => ([(0,3),(1,2),(2,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,2),(3,6),(4,5),(5,6)],7) => ([(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
([(0,3),(1,2),(4,6),(5,6)],7) => ([(0,3),(1,2),(4,6),(5,6)],7) => ([(2,3)],4) => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
([(2,3),(4,5),(4,6),(5,6)],7) => ([(2,3),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,3),(2,3)],4) => ([(0,3),(1,3),(2,3)],4) => 2
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => ([(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,2),(1,3),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 1
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(2,5),(3,4)],6) => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => 2
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => 2
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 1
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,2),(1,5),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => ([(0,1),(0,2),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => 1
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => ([(0,4),(0,6),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => ([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => 2
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => ([(0,1),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => ([(0,1),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 2
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => ([(0,5),(1,2),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,3),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 1
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => ([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => ([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,5),(1,3),(1,5),(2,4),(2,5),(3,4),(4,5)],6) => 1
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => ([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 2
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => ([(0,4),(1,3),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
>>> Load all 150 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Map
line graph
Description
The line graph of a graph.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Let $G$ be a graph with edge set $E$. Then its line graph is the graph with vertex set $E$, such that two vertices $e$ and $f$ are adjacent if and only if they are incident to a common vertex in $G$.
Map
Ore closure
Description
The Ore closure of a graph.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
The Ore closure of a connected graph $G$ has the same vertices as $G$, and the smallest set of edges containing the edges of $G$ such that for any two vertices $u$ and $v$ whose sum of degrees is at least the number of vertices, then $(u,v)$ is also an edge.
For disconnected graphs, we compute the closure separately for each component.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!