Identifier
-
Mp00255:
Decorated permutations
—lower permutation⟶
Permutations
Mp00087: Permutations —inverse first fundamental transformation⟶ Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
St000772: Graphs ⟶ ℤ
Values
[+] => [1] => [1] => ([],1) => 1
[-] => [1] => [1] => ([],1) => 1
[-,+] => [2,1] => [2,1] => ([(0,1)],2) => 1
[-,+,+] => [2,3,1] => [3,1,2] => ([(0,2),(1,2)],3) => 1
[-,-,+] => [3,1,2] => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => 2
[-,+,+,+] => [2,3,4,1] => [4,1,2,3] => ([(0,3),(1,3),(2,3)],4) => 2
[-,-,+,+] => [3,4,1,2] => [3,1,4,2] => ([(0,3),(1,2),(2,3)],4) => 1
[-,+,-,+] => [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[-,-,-,+] => [4,1,2,3] => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
[-,3,2,+] => [2,4,1,3] => [4,3,1,2] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 1
[4,-,+,1] => [3,1,4,2] => [4,2,1,3] => ([(0,3),(1,2),(1,3),(2,3)],4) => 1
[-,+,+,+,+] => [2,3,4,5,1] => [5,1,2,3,4] => ([(0,4),(1,4),(2,4),(3,4)],5) => 3
[-,-,+,+,+] => [3,4,5,1,2] => [5,2,4,1,3] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,+,-,+,+] => [2,4,5,1,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[-,+,+,-,+] => [2,3,5,1,4] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-,-,-,+,+] => [4,5,1,2,3] => [5,3,1,4,2] => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,-,+,-,+] => [3,5,1,2,4] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
[-,+,-,-,+] => [2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,-,-,-,+] => [5,1,2,3,4] => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
[-,+,4,3,+] => [2,3,5,1,4] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-,-,4,3,+] => [3,5,1,2,4] => [3,1,5,4,2] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
[-,3,2,+,+] => [2,4,5,1,3] => [4,1,2,5,3] => ([(0,4),(1,4),(2,3),(3,4)],5) => 1
[-,3,2,-,+] => [2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,3,4,2,+] => [2,5,1,3,4] => [5,4,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,4,2,3,+] => [2,3,5,1,4] => [5,4,1,2,3] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
[-,4,+,2,+] => [3,2,5,1,4] => [2,5,4,1,3] => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 1
[-,4,-,2,+] => [2,5,1,4,3] => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 2
[-,5,-,2,4] => [2,4,1,5,3] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,5,-,+,2] => [4,2,1,5,3] => [2,5,3,1,4] => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
[2,4,+,1,+] => [3,1,5,2,4] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[2,5,-,+,1] => [4,1,2,5,3] => [5,3,2,1,4] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[4,-,+,1,+] => [3,1,5,4,2] => [4,5,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 1
[5,-,+,1,4] => [3,1,4,5,2] => [5,2,1,3,4] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 2
[5,-,+,+,1] => [3,4,1,5,2] => [3,1,5,2,4] => ([(0,4),(1,3),(2,3),(2,4)],5) => 1
[5,+,-,+,1] => [2,4,1,5,3] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[5,-,-,+,1] => [4,1,5,2,3] => [4,2,1,5,3] => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 1
[5,-,+,-,1] => [3,1,5,2,4] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[5,-,4,3,1] => [3,1,5,2,4] => [5,4,2,1,3] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[5,3,2,+,1] => [2,4,1,5,3] => [5,3,1,2,4] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 1
[-,+,+,+,+,+] => [2,3,4,5,6,1] => [6,1,2,3,4,5] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 4
[-,-,+,+,+,+] => [3,4,5,6,1,2] => [5,1,3,6,2,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
[-,+,-,+,+,+] => [2,4,5,6,1,3] => [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,+,-,+,+] => [2,3,5,6,1,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1
[-,+,+,+,-,+] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-,-,-,+,+,+] => [4,5,6,1,2,3] => [4,1,5,2,6,3] => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
[-,-,+,-,+,+] => [3,5,6,1,2,4] => [5,2,6,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1
[-,-,+,+,-,+] => [3,4,6,1,2,5] => [6,5,2,4,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,-,-,+,+] => [2,5,6,1,3,4] => [6,4,1,2,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,-,+,-,+] => [2,4,6,1,3,5] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
[-,+,+,-,-,+] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,-,-,-,+,+] => [5,6,1,2,3,4] => [5,3,1,6,4,2] => ([(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,-,-,+,-,+] => [4,6,1,2,3,5] => [6,5,3,1,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,-,+,-,-,+] => [3,6,1,2,4,5] => [3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,-,-,-,+] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,-,-,-,-,+] => [6,1,2,3,4,5] => [6,5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
[-,+,+,5,4,+] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-,-,+,5,4,+] => [3,4,6,1,2,5] => [6,5,2,4,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,-,5,4,+] => [2,4,6,1,3,5] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
[-,-,-,5,4,+] => [4,6,1,2,3,5] => [6,5,3,1,4,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,4,3,+,+] => [2,3,5,6,1,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1
[-,-,4,3,+,+] => [3,5,6,1,2,4] => [5,2,6,4,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 1
[-,+,4,3,-,+] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,-,4,3,-,+] => [3,6,1,2,4,5] => [3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,4,5,3,+] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,-,4,5,3,+] => [3,6,1,2,4,5] => [3,1,6,5,4,2] => ([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,5,3,4,+] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-,-,5,3,4,+] => [3,4,6,1,2,5] => [6,5,2,4,1,3] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,5,+,3,+] => [2,4,3,6,1,5] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,-,5,+,3,+] => [4,3,6,1,2,5] => [4,1,6,5,2,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
[-,+,5,-,3,+] => [2,3,6,1,5,4] => [5,6,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 2
[-,-,5,-,3,+] => [3,6,1,2,5,4] => [3,1,5,6,4,2] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => 1
[-,+,6,-,3,5] => [2,3,5,1,6,4] => [6,4,1,2,3,5] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,-,6,-,3,5] => [3,5,1,2,6,4] => [3,1,6,4,2,5] => ([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,+,6,-,+,3] => [2,5,3,1,6,4] => [3,6,4,1,2,5] => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[-,-,6,-,+,3] => [5,3,1,2,6,4] => [6,4,2,3,1,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,2,+,+,+] => [2,4,5,6,1,3] => [6,3,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,2,-,+,+] => [2,5,6,1,3,4] => [6,4,1,2,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,2,+,-,+] => [2,4,6,1,3,5] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
[-,3,2,-,-,+] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,2,5,4,+] => [2,4,6,1,3,5] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
[-,3,4,2,+,+] => [2,5,6,1,3,4] => [6,4,1,2,5,3] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,4,2,-,+] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,4,5,2,+] => [2,6,1,3,4,5] => [6,5,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,5,2,4,+] => [2,4,6,1,3,5] => [4,1,2,6,5,3] => ([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 1
[-,3,5,+,2,+] => [4,2,6,1,3,5] => [2,4,1,6,5,3] => ([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => 1
[-,3,5,-,2,+] => [2,6,1,3,5,4] => [5,6,4,3,1,2] => ([(0,2),(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,3,6,-,2,5] => [2,5,1,3,6,4] => [6,4,3,1,2,5] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,3,6,-,+,2] => [5,2,1,3,6,4] => [2,6,4,3,1,5] => ([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,4,2,3,+,+] => [2,3,5,6,1,4] => [5,1,2,3,6,4] => ([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 1
[-,4,2,3,-,+] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,4,2,5,3,+] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,4,+,2,+,+] => [3,2,5,6,1,4] => [2,5,1,3,6,4] => ([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 1
[-,4,-,2,+,+] => [2,5,6,1,4,3] => [5,4,1,2,6,3] => ([(0,3),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,4,+,2,-,+] => [3,2,6,1,4,5] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,4,-,2,-,+] => [2,6,1,4,3,5] => [4,6,5,3,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[-,4,+,5,2,+] => [3,2,6,1,4,5] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,4,-,5,2,+] => [2,6,1,4,3,5] => [4,6,5,3,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[-,4,5,2,3,+] => [2,3,6,1,4,5] => [6,5,4,1,2,3] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 2
[-,4,5,3,2,+] => [3,2,6,1,4,5] => [2,6,5,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[-,5,2,3,4,+] => [2,3,4,6,1,5] => [6,5,1,2,3,4] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
[-,5,2,+,3,+] => [2,4,3,6,1,5] => [3,6,5,1,2,4] => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
>>> Load all 219 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
inverse first fundamental transformation
Description
Let $\sigma = (i_{11}\cdots i_{1k_1})\cdots(i_{\ell 1}\cdots i_{\ell k_\ell})$ be a permutation given by cycle notation such that every cycle starts with its maximal entry, and all cycles are ordered increasingly by these maximal entries.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Maps $\sigma$ to the permutation $[i_{11},\ldots,i_{1k_1},\ldots,i_{\ell 1},\ldots,i_{\ell k_\ell}]$ in one-line notation.
In other words, this map sends the maximal entries of the cycles to the left-to-right maxima, and the sequences between two left-to-right maxima are given by the cycles.
Map
lower permutation
Description
The lower bound in the Grassmann interval corresponding to the decorated permutation.
Let $I$ be the anti-exceedance set of a decorated permutation $w$. Let $v$ be the $k$-Grassmannian permutation determined by $v[k] = w^{-1}(I)$ and let $u$ be the permutation satisfying $u = wv$. Then $[u, v]$ is the Grassmann interval corresponding to $w$.
This map returns $u$.
Let $I$ be the anti-exceedance set of a decorated permutation $w$. Let $v$ be the $k$-Grassmannian permutation determined by $v[k] = w^{-1}(I)$ and let $u$ be the permutation satisfying $u = wv$. Then $[u, v]$ is the Grassmann interval corresponding to $w$.
This map returns $u$.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!