Identifier
Values
[1,0] => [[1],[]] => ([],1) => ([],1) => 1
[1,0,1,1,0,0,1,0] => [[2,2,1],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[1,1,0,0,1,1,0,0] => [[3,2],[1]] => ([(0,3),(1,2),(1,3)],4) => ([(0,3),(1,2),(2,3)],4) => 1
[1,0,1,0,1,1,0,0,1,0] => [[2,2,1,1],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
[1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1],[1,1]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
[1,0,1,1,0,0,1,1,0,0] => [[3,2,1],[1]] => ([(0,3),(0,4),(1,2),(1,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
[1,0,1,1,0,1,0,0,1,0] => [[3,3,1],[2]] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
[1,0,1,1,0,1,1,0,0,0] => [[3,3,1],[1]] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,1,0,0,0,1,0] => [[2,2,2,1],[1]] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
[1,1,0,0,1,0,1,1,0,0] => [[3,2,2],[1,1]] => ([(0,4),(1,2),(1,3),(3,4)],5) => ([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,0,1,1,0,0,1,0] => [[3,3,2],[2,1]] => ([(0,4),(1,3),(2,3),(2,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 1
[1,1,0,0,1,1,0,1,0,0] => [[4,2],[1]] => ([(0,4),(1,2),(1,4),(2,3)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
[1,1,0,0,1,1,1,0,0,0] => [[3,3,2],[1,1]] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,1,0,0,1,1,0,0] => [[4,3],[2]] => ([(0,3),(1,2),(1,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 1
[1,1,0,1,1,0,0,1,0,0] => [[4,3],[1]] => ([(0,4),(1,2),(1,4),(2,3),(2,5),(4,5)],6) => ([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 1
[1,1,1,0,0,0,1,1,0,0] => [[3,2,2],[1]] => ([(0,2),(0,4),(1,3),(1,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,0,1,0,0,1,0] => [[3,3,2],[2]] => ([(0,4),(1,2),(1,3),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 1
[1,1,1,0,0,1,1,0,0,0] => [[3,3,2],[1]] => ([(0,3),(0,6),(1,2),(1,6),(2,4),(3,5),(6,4),(6,5)],7) => ([(0,3),(0,6),(1,2),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,0,1,0,1,1,0,0,1,0] => [[2,2,1,1,1],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1],[1,1]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [[3,3,1,1],[2]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[1,0,1,0,1,1,0,1,1,0,0,0] => [[3,3,1,1],[1]] => ([(0,3),(0,6),(1,4),(1,6),(3,5),(4,2),(6,5)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,1,1,0,0,0,1,0] => [[2,2,2,1,1],[1]] => ([(0,6),(1,4),(1,6),(3,2),(4,3),(4,5),(6,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,0,1,0,1,0,1,0] => [[2,2,2,2,1],[1,1,1]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1],[1,1]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [[4,2,1],[1]] => ([(0,3),(0,5),(1,4),(1,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,0,1,1,0,0,1,1,1,0,0,0] => [[3,3,2,1],[1,1]] => ([(0,4),(0,6),(1,2),(1,3),(2,5),(3,5),(3,6)],7) => ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,1,0,1,0,0,1,0,1,0] => [[3,3,3,1],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,0,0,1,1,0,0] => [[4,3,1],[2]] => ([(0,4),(0,5),(1,2),(1,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,0,1,0,0,1,0] => [[4,4,1],[3]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,0,1,1,0,1,0,1,1,0,0,0] => [[4,4,1],[2]] => ([(0,4),(0,6),(1,2),(1,3),(3,6),(4,5),(6,5)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,1,0,0,0,1,0] => [[3,3,3,1],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,1,0,0,1,0,0] => [[4,3,1],[1]] => ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7) => ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,0,1,1,1,0,0,0,1,0,1,0] => [[2,2,2,2,1],[1,1]] => ([(0,3),(1,4),(1,6),(3,6),(4,2),(4,5),(6,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,0,1,1,1,0,0,0,1,1,0,0] => [[3,2,2,1],[1]] => ([(0,3),(0,6),(1,4),(1,6),(4,2),(4,5),(6,5)],7) => ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,0,1,1,1,0,0,1,0,0,1,0] => [[3,3,2,1],[2]] => ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7) => ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2],[1,1,1]] => ([(0,5),(1,2),(1,4),(3,5),(4,3)],6) => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,0,1,0,1,1,0,1,0,0] => [[4,2,2],[1,1]] => ([(0,5),(1,3),(1,4),(3,5),(4,2)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[1,1,0,0,1,0,1,1,1,0,0,0] => [[3,3,2,2],[1,1,1]] => ([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2],[2,2,1]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5)],6) => ([(0,1),(0,3),(0,5),(1,2),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,0,1,1,0,1,0,0,1,0] => [[4,4,2],[3,1]] => ([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 1
[1,1,0,0,1,1,0,1,0,1,0,0] => [[5,2],[1]] => ([(0,5),(1,4),(1,5),(3,2),(4,3)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,1,0,0,1,1,0,1,1,0,0,0] => [[4,4,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5),(3,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,0,1,1,1,0,0,0,1,0] => [[3,3,3,2],[2,1,1]] => ([(0,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7) => ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,1,0,0,1,1,1,0,0,1,0,0] => [[4,3,2],[1,1]] => ([(0,6),(1,3),(1,4),(3,5),(3,6),(4,2),(4,5)],7) => ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,1,0,0,1,0,1,1,0,0] => [[4,3,3],[2,2]] => ([(0,4),(1,2),(1,3),(3,5),(4,5)],6) => ([(0,5),(1,3),(1,4),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 1
[1,1,0,1,0,0,1,1,0,0,1,0] => [[4,4,3],[3,2]] => ([(0,4),(1,4),(1,5),(2,3),(3,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,1,0,1,0,0,1,1,0,1,0,0] => [[5,3],[2]] => ([(0,3),(1,4),(1,5),(3,5),(4,2)],6) => ([(0,4),(0,5),(1,2),(1,3),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,1,0,1,0,0,1,1,1,0,0,0] => [[4,4,3],[2,2]] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(3,6),(4,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,1,0,0,1,1,0,0] => [[5,4],[3]] => ([(0,4),(1,3),(1,5),(2,5),(4,2)],6) => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 1
[1,1,0,1,0,1,1,0,0,1,0,0] => [[5,4],[2]] => ([(0,3),(1,4),(1,6),(3,6),(4,2),(4,5),(6,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,1,0,1,1,0,0,0,1,1,0,0] => [[4,3,3],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5),(4,6),(5,6)],7) => ([(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,1,1,0,0,1,0,0,1,0] => [[4,4,3],[3,1]] => ([(0,4),(1,5),(2,3),(2,4),(3,5),(3,6),(4,6)],7) => ([(0,4),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,1,0,1,1,0,0,1,0,1,0,0] => [[5,3],[1]] => ([(0,6),(1,4),(1,6),(3,2),(4,3),(4,5),(6,5)],7) => ([(0,6),(1,4),(1,5),(2,3),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,1,1,0,0,0,1,0,1,1,0,0] => [[3,2,2,2],[1,1]] => ([(0,4),(0,6),(1,2),(1,3),(3,6),(4,5),(6,5)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,1,0,0,0,1,1,0,0,1,0] => [[3,3,2,2],[2,1]] => ([(0,4),(1,4),(1,5),(2,3),(2,5),(3,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,1,0,0,0,1,1,0,1,0,0] => [[4,2,2],[1]] => ([(0,3),(0,6),(1,4),(1,6),(3,5),(4,2),(6,5)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,1,0,0,1,0,0,1,0,1,0] => [[3,3,3,2],[2,2]] => ([(0,4),(1,2),(1,3),(2,5),(3,5),(3,6),(4,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,1,0,0,1,0,0,1,1,0,0] => [[4,3,2],[2]] => ([(0,4),(0,6),(1,2),(1,3),(2,5),(3,5),(3,6)],7) => ([(0,5),(0,6),(1,2),(1,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,1,0,0,1,0,1,0,0,1,0] => [[4,4,2],[3]] => ([(0,6),(1,3),(1,4),(2,6),(3,5),(4,2),(4,5)],7) => ([(0,6),(1,5),(1,6),(2,3),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,0,1,0,1,0,1,1,0,0,1,0] => [[2,2,1,1,1,1],[1]] => ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,0,1,1,0,0,1,0,1,0] => [[2,2,2,1,1,1],[1,1]] => ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,0,1,1,0,0,1,1,0,0] => [[3,2,1,1,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => 1
[1,0,1,0,1,0,1,1,0,1,0,0,1,0] => [[3,3,1,1,1],[2]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,0,1,1,0,0,1,0,1,0,1,0] => [[2,2,2,2,1,1],[1,1,1]] => ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,1,0,0,1,0,1,1,0,0] => [[3,2,2,1,1],[1,1]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,0,1,1,0,0,1,1,0,0,1,0] => [[3,3,2,1,1],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 1
[1,0,1,0,1,1,0,0,1,1,0,1,0,0] => [[4,2,1,1],[1]] => ([(0,5),(0,6),(1,4),(1,6),(4,2),(5,3)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,1,0,1,0,0,1,0,1,0] => [[3,3,3,1,1],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,1,0,1,0,0,1,1,0,0] => [[4,3,1,1],[2]] => ([(0,4),(0,6),(1,3),(1,5),(3,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,0,1,1,0,1,0,1,0,0,1,0] => [[4,4,1,1],[3]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,0,1,1,0,0,1,0,1,0,1,0,1,0] => [[2,2,2,2,2,1],[1,1,1,1]] => ([(0,5),(1,3),(1,6),(2,6),(4,2),(5,4)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,1,0,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,1],[1,1,1]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,0,1,1,0,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,1],[2,1,1]] => ([(0,5),(1,3),(1,6),(2,4),(2,5),(4,6)],7) => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,0,1,0,1,1,0,1,0,0] => [[4,2,2,1],[1,1]] => ([(0,4),(0,6),(1,3),(1,5),(3,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,0,1,1,0,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,1],[2,2,1]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 1
[1,0,1,1,0,0,1,1,0,0,1,1,0,0] => [[4,3,2,1],[2,1]] => ([(0,5),(0,6),(1,4),(1,6),(2,3),(2,5)],7) => ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,0,1,1,0,1,0,0,1,0] => [[4,4,2,1],[3,1]] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,0,1,1,0,0,1,1,0,1,0,1,0,0] => [[5,2,1],[1]] => ([(0,5),(0,6),(1,3),(1,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => 1
[1,0,1,1,0,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,1],[2,2,2]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7) => ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,0,0,1,0,1,1,0,0] => [[4,3,3,1],[2,2]] => ([(0,3),(0,5),(1,2),(1,4),(4,6),(5,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,0,0,1,1,0,0,1,0] => [[4,4,3,1],[3,2]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,0,1,1,0,1,0,0,1,1,0,1,0,0] => [[5,3,1],[2]] => ([(0,5),(0,6),(1,3),(1,4),(4,6),(5,2)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,0,1,0,0,1,0,1,0] => [[4,4,4,1],[3,3]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,0,1,0,0,1,1,0,0] => [[5,4,1],[3]] => ([(0,4),(0,6),(1,2),(1,5),(3,6),(5,3)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,0,1,1,0,1,0,1,0,1,0,0,1,0] => [[5,5,1],[4]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,0,1,0,1,1,0,0] => [[3,2,2,2,2],[1,1,1,1]] => ([(0,6),(1,2),(1,5),(3,6),(4,3),(5,4)],7) => ([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,0,1,1,0,0,1,0] => [[3,3,2,2,2],[2,1,1,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,0,1,1,0,1,0,0] => [[4,2,2,2],[1,1,1]] => ([(0,6),(1,4),(1,5),(3,6),(4,2),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,1,0,0,1,0,1,0] => [[3,3,3,2,2],[2,2,1,1]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,1,0,0,1,1,0,0] => [[4,3,2,2],[2,1,1]] => ([(0,6),(1,3),(1,5),(2,4),(2,5),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,1,0,0,1,0,1,1,0,1,0,0,1,0] => [[4,4,2,2],[3,1,1]] => ([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => ([(0,5),(0,6),(1,2),(1,4),(1,6),(2,3),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,0,1,1,0,1,0,1,0,0] => [[5,2,2],[1,1]] => ([(0,6),(1,3),(1,5),(3,6),(4,2),(5,4)],7) => ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,1,0,0,1,0,1,0,1,0] => [[3,3,3,3,2],[2,2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => 1
[1,1,0,0,1,1,0,0,1,0,1,1,0,0] => [[4,3,3,2],[2,2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,4),(4,6)],7) => ([(0,3),(0,4),(0,6),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => 1
[1,1,0,0,1,1,0,0,1,1,0,0,1,0] => [[4,4,3,2],[3,2,1]] => ([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6)],7) => ([(0,1),(0,3),(0,4),(0,6),(1,2),(1,4),(1,5),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,1,0,0,1,1,0,1,0,0] => [[5,3,2],[2,1]] => ([(0,5),(1,5),(1,6),(2,3),(2,6),(3,4)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 1
>>> Load all 116 entries. <<<
[1,1,0,0,1,1,0,1,0,0,1,0,1,0] => [[4,4,4,2],[3,3,1]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,0,1,1,0,1,0,0,1,1,0,0] => [[5,4,2],[3,1]] => ([(0,5),(1,3),(1,6),(2,4),(2,5),(4,6)],7) => ([(0,4),(0,5),(0,6),(1,3),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => 1
[1,1,0,0,1,1,0,1,0,1,0,0,1,0] => [[5,5,2],[4,1]] => ([(0,5),(1,6),(2,3),(2,5),(3,4),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,1,0,0,1,1,0,1,0,1,0,1,0,0] => [[6,2],[1]] => ([(0,6),(1,5),(1,6),(3,4),(4,2),(5,3)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,0,1,0,1,0,1,1,0,0] => [[4,3,3,3],[2,2,2]] => ([(0,4),(1,2),(1,5),(3,6),(4,6),(5,3)],7) => ([(0,6),(1,4),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => 1
[1,1,0,1,0,0,1,0,1,1,0,0,1,0] => [[4,4,3,3],[3,2,2]] => ([(0,5),(1,3),(2,4),(2,5),(3,6),(4,6)],7) => ([(0,5),(0,6),(1,3),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,0,1,0,1,1,0,1,0,0] => [[5,3,3],[2,2]] => ([(0,4),(1,3),(1,5),(3,6),(4,6),(5,2)],7) => ([(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,0,1,1,0,0,1,0,1,0] => [[4,4,4,3],[3,3,2]] => ([(0,5),(0,6),(1,4),(2,3),(3,5),(4,6)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,0,1,1,0,0,1,1,0,0] => [[5,4,3],[3,2]] => ([(0,5),(0,6),(1,4),(2,3),(2,5),(4,6)],7) => ([(0,4),(0,5),(0,6),(1,2),(1,3),(1,4),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(5,6)],7) => 1
[1,1,0,1,0,0,1,1,0,1,0,0,1,0] => [[5,5,3],[4,2]] => ([(0,6),(1,3),(2,4),(2,5),(3,5),(4,6)],7) => ([(0,1),(0,5),(0,6),(1,3),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,1,0,0,1,1,0,1,0,1,0,0] => [[6,3],[2]] => ([(0,3),(1,5),(1,6),(3,6),(4,2),(5,4)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,1,0,0,1,0,1,1,0,0] => [[5,4,4],[3,3]] => ([(0,5),(1,2),(1,4),(3,6),(4,6),(5,3)],7) => ([(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => 1
[1,1,0,1,0,1,0,0,1,1,0,0,1,0] => [[5,5,4],[4,3]] => ([(0,5),(1,5),(1,6),(2,3),(3,4),(4,6)],7) => ([(0,5),(0,6),(1,4),(1,5),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6)],7) => 1
[1,1,0,1,0,1,0,0,1,1,0,1,0,0] => [[6,4],[3]] => ([(0,4),(1,5),(1,6),(3,6),(4,3),(5,2)],7) => ([(0,5),(0,6),(1,2),(1,3),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
[1,1,0,1,0,1,0,1,0,0,1,1,0,0] => [[6,5],[4]] => ([(0,5),(1,3),(1,6),(2,6),(4,2),(5,4)],7) => ([(0,6),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The multiplicity of the largest distance Laplacian eigenvalue in a connected graph.
The distance Laplacian of a graph is the (symmetric) matrix with row and column sums $0$, which has the negative distances between two vertices as its off-diagonal entries. This statistic is the largest multiplicity of an eigenvalue.
For example, the cycle on four vertices has distance Laplacian
$$ \left(\begin{array}{rrrr} 4 & -1 & -2 & -1 \\ -1 & 4 & -1 & -2 \\ -2 & -1 & 4 & -1 \\ -1 & -2 & -1 & 4 \end{array}\right). $$
Its eigenvalues are $0,4,4,6$, so the statistic is $1$.
The path on four vertices has eigenvalues $0, 4.7\dots, 6, 9.2\dots$ and therefore also statistic $1$.
The graphs with statistic $n-1$, $n-2$ and $n-3$ have been characterised, see [1].
Map
cell poset
Description
The Young diagram of a skew partition regarded as a poset.
This is the poset on the cells of the Young diagram, such that a cell $d$ is greater than a cell $c$ if the entry in $d$ must be larger than the entry of $c$ in any standard Young tableau on the skew partition.
Map
incomparability graph
Description
The incomparability graph of a poset.
Map
skew partition
Description
The parallelogram polyomino corresponding to a Dyck path, interpreted as a skew partition.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
This map returns the skew partition definded by the diagram of $\gamma(D)$.