Identifier
Values
([],1) => ([],1) => ([],1) => 1
([],2) => ([],1) => ([],1) => 1
([],3) => ([],1) => ([],1) => 1
([],4) => ([],1) => ([],1) => 1
([],5) => ([],1) => ([],1) => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([],6) => ([],1) => ([],1) => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Map
complement
Description
The complement of a graph.
The complement of a graph has the same vertices, but exactly those edges that are not in the original graph.
Map
core
Description
The core of a graph.
The core of a graph $G$ is the smallest graph $C$ such that there is a homomorphism from $G$ to $C$ and a homomorphism from $C$ to $G$.
Note that the core of a graph is not necessarily connected, see [2].