Identifier
-
Mp00080:
Set partitions
—to permutation⟶
Permutations
Mp00160: Permutations —graph of inversions⟶ Graphs
Mp00247: Graphs —de-duplicate⟶ Graphs
St000777: Graphs ⟶ ℤ
Values
{{1}} => [1] => ([],1) => ([],1) => 1
{{1,2}} => [2,1] => ([(0,1)],2) => ([(0,1)],2) => 2
{{1},{2}} => [1,2] => ([],2) => ([],1) => 1
{{1,2,3}} => [2,3,1] => ([(0,2),(1,2)],3) => ([(0,1)],2) => 2
{{1,3},{2}} => [3,2,1] => ([(0,1),(0,2),(1,2)],3) => ([(0,1),(0,2),(1,2)],3) => 2
{{1},{2},{3}} => [1,2,3] => ([],3) => ([],1) => 1
{{1,2,3,4}} => [2,3,4,1] => ([(0,3),(1,3),(2,3)],4) => ([(0,1)],2) => 2
{{1,2,4},{3}} => [2,4,3,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,4},{2}} => [3,2,4,1] => ([(0,3),(1,2),(1,3),(2,3)],4) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3},{2,4}} => [3,4,1,2] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,1)],2) => 2
{{1,4},{2,3}} => [4,3,2,1] => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
{{1,4},{2},{3}} => [4,2,3,1] => ([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,2)],3) => 2
{{1},{2},{3},{4}} => [1,2,3,4] => ([],4) => ([],1) => 1
{{1,2,3,4,5}} => [2,3,4,5,1] => ([(0,4),(1,4),(2,4),(3,4)],5) => ([(0,1)],2) => 2
{{1,2,3,5},{4}} => [2,3,5,4,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,4,5},{3}} => [2,4,3,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,4},{3,5}} => [2,4,5,1,3] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 4
{{1,2,5},{3,4}} => [2,5,4,3,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,5},{3},{4}} => [2,5,3,4,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,4,5},{2}} => [3,2,4,5,1] => ([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,4},{2,5}} => [3,5,4,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,5},{2,4}} => [3,4,5,2,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 2
{{1,3},{2,4,5}} => [3,4,1,5,2] => ([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(2,3)],4) => 4
{{1,3,5},{2},{4}} => [3,2,5,4,1] => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 4
{{1,3},{2,5},{4}} => [3,5,1,4,2] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 5
{{1,4,5},{2,3}} => [4,3,2,5,1] => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4},{2,3,5}} => [4,3,5,1,2] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,5},{2,3,4}} => [5,3,4,2,1] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
{{1,5},{2,3},{4}} => [5,3,2,4,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4,5},{2},{3}} => [4,2,3,5,1] => ([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,4},{2,5},{3}} => [4,5,3,1,2] => ([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 2
{{1,4},{2},{3,5}} => [4,2,5,1,3] => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 5
{{1,5},{2,4},{3}} => [5,4,3,2,1] => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 2
{{1,5},{2},{3,4}} => [5,2,4,3,1] => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,5},{2},{3},{4}} => [5,2,3,4,1] => ([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(0,1),(0,2),(1,2)],3) => 2
{{1},{2},{3},{4},{5}} => [1,2,3,4,5] => ([],5) => ([],1) => 1
{{1,2,3,4,5,6}} => [2,3,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1)],2) => 2
{{1,2,3,4,6},{5}} => [2,3,4,6,5,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,3,5,6},{4}} => [2,3,5,4,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,3,5},{4,6}} => [2,3,5,6,1,4] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 4
{{1,2,3,6},{4,5}} => [2,3,6,5,4,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,3,6},{4},{5}} => [2,3,6,4,5,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,4,5,6},{3}} => [2,4,3,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,4,5},{3,6}} => [2,4,6,5,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 6
{{1,2,4,6},{3,5}} => [2,4,5,6,3,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,4},{3,5,6}} => [2,4,5,1,6,3] => ([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,3),(2,3),(2,4)],5) => 5
{{1,2,4,6},{3},{5}} => [2,4,3,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
{{1,2,4},{3,6},{5}} => [2,4,6,1,5,3] => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 5
{{1,2,5,6},{3,4}} => [2,5,4,3,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,5},{3,4,6}} => [2,5,4,6,1,3] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 6
{{1,2,6},{3,4,5}} => [2,6,4,5,3,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,2,6},{3,4},{5}} => [2,6,4,3,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,2,5,6},{3},{4}} => [2,5,3,4,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,2,5},{3,6},{4}} => [2,5,6,4,1,3] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 5
{{1,2,5},{3},{4,6}} => [2,5,3,6,1,4] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 6
{{1,2,6},{3,5},{4}} => [2,6,5,4,3,1] => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,2,6},{3},{4,5}} => [2,6,3,5,4,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,2,6},{3},{4},{5}} => [2,6,3,4,5,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,4,5,6},{2}} => [3,2,4,5,6,1] => ([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,4,5},{2,6}} => [3,6,4,5,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,4,6},{2,5}} => [3,5,4,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,3,4},{2,5,6}} => [3,5,4,1,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 6
{{1,3,4,6},{2},{5}} => [3,2,4,6,5,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
{{1,3,4},{2,6},{5}} => [3,6,4,1,5,2] => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,4),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,3,5,6},{2,4}} => [3,4,5,2,6,1] => ([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,3,5},{2,4,6}} => [3,4,5,6,1,2] => ([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,1)],2) => 2
{{1,3,6},{2,4,5}} => [3,4,6,5,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,3},{2,4,5,6}} => [3,4,1,5,6,2] => ([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(2,3)],4) => 4
{{1,3,6},{2,4},{5}} => [3,4,6,2,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 5
{{1,3},{2,4,6},{5}} => [3,4,1,6,5,2] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 5
{{1,3,5,6},{2},{4}} => [3,2,5,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 4
{{1,3,5},{2,6},{4}} => [3,6,5,4,1,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,3,5},{2},{4,6}} => [3,2,5,6,1,4] => ([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 5
{{1,3,6},{2,5},{4}} => [3,5,6,4,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,3},{2,5,6},{4}} => [3,5,1,4,6,2] => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 6
{{1,3},{2,5},{4,6}} => [3,5,1,6,2,4] => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,3),(0,5),(1,2),(1,5),(2,4),(3,4),(4,5)],6) => 5
{{1,3,6},{2},{4,5}} => [3,2,6,5,4,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,3},{2,6},{4,5}} => [3,6,1,5,4,2] => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,3,6},{2},{4},{5}} => [3,2,6,4,5,1] => ([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 4
{{1,3},{2,6},{4},{5}} => [3,6,1,4,5,2] => ([(0,1),(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 5
{{1,4,5,6},{2,3}} => [4,3,2,5,6,1] => ([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4,5},{2,3,6}} => [4,3,6,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 4
{{1,4,6},{2,3,5}} => [4,3,5,6,2,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4},{2,3,5,6}} => [4,3,5,1,6,2] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 6
{{1,4,6},{2,3},{5}} => [4,3,2,6,5,1] => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
{{1,4},{2,3,6},{5}} => [4,3,6,1,5,2] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 5
{{1,5,6},{2,3,4}} => [5,3,4,2,6,1] => ([(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,5},{2,3,4,6}} => [5,3,4,6,1,2] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,6},{2,3,4,5}} => [6,3,4,5,2,1] => ([(0,3),(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 2
{{1,6},{2,3,4},{5}} => [6,3,4,2,5,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,5,6},{2,3},{4}} => [5,3,2,4,6,1] => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,5},{2,3,6},{4}} => [5,3,6,4,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 5
{{1,5},{2,3},{4,6}} => [5,3,2,6,1,4] => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,1),(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 6
{{1,6},{2,3,5},{4}} => [6,3,5,4,2,1] => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,6},{2,3},{4,5}} => [6,3,2,5,4,1] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
{{1,6},{2,3},{4},{5}} => [6,3,2,4,5,1] => ([(0,4),(0,5),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4,5,6},{2},{3}} => [4,2,3,5,6,1] => ([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(1,2),(1,3),(2,3)],4) => 4
{{1,4,5},{2,6},{3}} => [4,6,3,5,1,2] => ([(0,3),(0,4),(0,5),(1,2),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => ([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 5
{{1,4,5},{2},{3,6}} => [4,2,6,5,1,3] => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => ([(0,4),(0,5),(1,2),(1,3),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 5
{{1,4,6},{2,5},{3}} => [4,5,3,6,2,1] => ([(0,4),(0,5),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
{{1,4},{2,5,6},{3}} => [4,5,3,1,6,2] => ([(0,5),(1,2),(1,3),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => ([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 5
>>> Load all 586 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of distinct eigenvalues of the distance Laplacian of a connected graph.
Map
graph of inversions
Description
The graph of inversions of a permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
For a permutation of $\{1,\dots,n\}$, this is the graph with vertices $\{1,\dots,n\}$, where $(i,j)$ is an edge if and only if it is an inversion of the permutation.
Map
to permutation
Description
Sends the set partition to the permutation obtained by considering the blocks as increasing cycles.
Map
de-duplicate
Description
The de-duplicate of a graph.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
Let $G = (V, E)$ be a graph. This map yields the graph whose vertex set is the set of (distinct) neighbourhoods $\{N_v | v \in V\}$ of $G$, and has an edge $(N_a, N_b)$ between two vertices if and only if $(a, b)$ is an edge of $G$. This is well-defined, because if $N_a = N_c$ and $N_b = N_d$, then $(a, b)\in E$ if and only if $(c, d)\in E$.
The image of this map is the set of so-called 'mating graphs' or 'point-determining graphs'.
This map preserves the chromatic number.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!