Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000781: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => [1] => 1
([],4) => [1,1,1,1] => [1,1,1] => [1,1] => 1
([(2,3)],4) => [2,1,1] => [1,1] => [1] => 1
([],5) => [1,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(3,4)],5) => [2,1,1,1] => [1,1,1] => [1,1] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [1] => 1
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => [1,1] => 1
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 1
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => [2] => 1
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [1] => 1
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => [1,1,1,1,1] => 1
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => [1,1,1,1] => 1
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => [1,1,1] => 1
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 1
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 1
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => [2,1] => 1
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 1
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => [1,1] => 1
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => [1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => [2] => 1
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => [1] => 1
([(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => [1] => 1
([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [1] => 1
([(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(2,7),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,7),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(3,7),(4,7),(5,7),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 1
([],8) => [1,1,1,1,1,1,1,1] => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
([(4,7),(5,6)],8) => [2,2,1,1,1,1] => [2,1,1,1,1] => [1,1,1,1] => 1
([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(4,6),(4,7),(5,6),(5,7)],8) => [4,1,1,1,1] => [1,1,1,1] => [1,1,1] => 1
([(2,7),(3,7),(4,6),(5,6)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 1
([(2,7),(3,6),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [5,1,1,1] => [1,1,1] => [1,1] => 1
([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(6,7)],8) => [3,3,1,1] => [3,1,1] => [1,1] => 1
([(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,1,1] => [2,1,1] => [1,1] => 1
([(2,6),(2,7),(3,4),(3,5),(4,5),(4,7),(5,6),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,3),(2,7),(3,6),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(2,5),(2,6),(2,7),(3,4),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 1
([(2,4),(2,5),(2,6),(2,7),(3,4),(3,5),(3,6),(3,7),(4,6),(4,7),(5,6),(5,7)],8) => [6,1,1] => [1,1] => [1] => 1
([(1,2),(1,3),(2,3),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,3,1] => [3,1] => [1] => 1
([(0,7),(1,6),(2,5),(3,4)],8) => [2,2,2,2] => [2,2,2] => [2,2] => 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7)],8) => [4,2,2] => [2,2] => [2] => 1
([(0,3),(1,2),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [4,2,2] => [2,2] => [2] => 1
([(2,7),(3,5),(3,8),(4,6),(4,8),(5,6),(5,7),(6,8),(7,8)],9) => [7,1,1] => [1,1] => [1] => 1
>>> Load all 132 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!