Identifier
-
Mp00013:
Binary trees
—to poset⟶
Posets
Mp00306: Posets —rowmotion cycle type⟶ Integer partitions
St000781: Integer partitions ⟶ ℤ
Values
[.,.] => ([],1) => [2] => 1
[.,[.,.]] => ([(0,1)],2) => [3] => 1
[[.,.],.] => ([(0,1)],2) => [3] => 1
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => [4] => 1
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => [4] => 1
[[.,.],[.,.]] => ([(0,2),(1,2)],3) => [3,2] => 1
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => [4] => 1
[[[.,.],.],.] => ([(0,2),(2,1)],3) => [4] => 1
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => [4,2] => 1
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => [7] => 1
[[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => [7] => 1
[[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => [7] => 1
[[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => [7] => 1
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => [4,2] => 1
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => [5] => 1
[.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => [5,2] => 1
[.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[.,[[.,.],[[.,.],.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[.,[[[.,.],.],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => [5,2] => 1
[.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[.,[.,.]],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,3,3] => 2
[[.,[.,.]],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,3,3] => 2
[[[.,.],.],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,3,3] => 2
[[[.,.],.],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => [4,3,3] => 2
[[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => [5,4] => 1
[[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => [5,2] => 1
[[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[[.,.],[.,[.,.]]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[[[.,.],[[.,.],.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[[[.,[.,.]],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[[[[.,.],.],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => [8] => 1
[[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => [5,2] => 1
[[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => [6] => 1
[.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[.,[[.,.],[.,.]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 1
[.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[[.,.],[.,[.,.]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[.,[[.,.],[[.,.],.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[.,[[.,[.,.]],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[.,[[[.,.],.],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[[[.,.],[.,.]],.]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 1
[.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[.,.],[.,[.,[.,.]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[.,.],[.,[[.,.],.]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[.,.],[[.,[.,.]],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[.,.],[[[.,.],.],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[.,[.,.]],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [5,3,3] => 3
[.,[[.,[.,.]],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [5,3,3] => 3
[.,[[[.,.],.],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [5,3,3] => 3
[.,[[[.,.],.],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => [5,3,3] => 3
[.,[[.,[.,[.,.]]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[.,[[.,.],.]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[[.,[.,.]],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[[[.,.],.],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => [6,4] => 1
[.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[.,[[.,.],[.,.]]],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 1
[.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[[.,.],[.,[.,.]]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[[[.,.],[[.,.],.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[[[.,[.,.]],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[[[[.,.],.],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => [9] => 1
[.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[[.,[[.,.],.]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
[.,[[[[.,.],[.,.]],.],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => [6,2] => 1
[.,[[[[.,[.,.]],.],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => [7] => 1
>>> Load all 258 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of proper colouring schemes of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1].
This statistic is the number of distinct such integer partitions that occur.
Map
rowmotion cycle type
Description
The cycle type of rowmotion on the order ideals of a poset.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!