Identifier
- St000783: Integer partitions ⟶ ℤ (values match St001432The order dimension of the partition.)
Values
=>
Cc0002;cc-rep
[]=>0
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>2
[1,1,1]=>1
[4]=>1
[3,1]=>2
[2,2]=>2
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>1
[4,1]=>2
[3,2]=>2
[3,1,1]=>2
[2,2,1]=>2
[2,1,1,1]=>2
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>2
[4,2]=>2
[4,1,1]=>2
[3,3]=>2
[3,2,1]=>3
[3,1,1,1]=>2
[2,2,2]=>2
[2,2,1,1]=>2
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>2
[5,2]=>2
[5,1,1]=>2
[4,3]=>2
[4,2,1]=>3
[4,1,1,1]=>2
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>3
[3,1,1,1,1]=>2
[2,2,2,1]=>2
[2,2,1,1,1]=>2
[2,1,1,1,1,1]=>2
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>2
[6,2]=>2
[6,1,1]=>2
[5,3]=>2
[5,2,1]=>3
[5,1,1,1]=>2
[4,4]=>2
[4,3,1]=>3
[4,2,2]=>3
[4,2,1,1]=>3
[4,1,1,1,1]=>2
[3,3,2]=>3
[3,3,1,1]=>3
[3,2,2,1]=>3
[3,2,1,1,1]=>3
[3,1,1,1,1,1]=>2
[2,2,2,2]=>2
[2,2,2,1,1]=>2
[2,2,1,1,1,1]=>2
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>2
[7,2]=>2
[7,1,1]=>2
[6,3]=>2
[6,2,1]=>3
[6,1,1,1]=>2
[5,4]=>2
[5,3,1]=>3
[5,2,2]=>3
[5,2,1,1]=>3
[5,1,1,1,1]=>2
[4,4,1]=>3
[4,3,2]=>3
[4,3,1,1]=>3
[4,2,2,1]=>3
[4,2,1,1,1]=>3
[4,1,1,1,1,1]=>2
[3,3,3]=>3
[3,3,2,1]=>3
[3,3,1,1,1]=>3
[3,2,2,2]=>3
[3,2,2,1,1]=>3
[3,2,1,1,1,1]=>3
[3,1,1,1,1,1,1]=>2
[2,2,2,2,1]=>2
[2,2,2,1,1,1]=>2
[2,2,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>2
[8,2]=>2
[8,1,1]=>2
[7,3]=>2
[7,2,1]=>3
[7,1,1,1]=>2
[6,4]=>2
[6,3,1]=>3
[6,2,2]=>3
[6,2,1,1]=>3
[6,1,1,1,1]=>2
[5,5]=>2
[5,4,1]=>3
[5,3,2]=>3
[5,3,1,1]=>3
[5,2,2,1]=>3
[5,2,1,1,1]=>3
[5,1,1,1,1,1]=>2
[4,4,2]=>3
[4,4,1,1]=>3
[4,3,3]=>3
[4,3,2,1]=>4
[4,3,1,1,1]=>3
[4,2,2,2]=>3
[4,2,2,1,1]=>3
[4,2,1,1,1,1]=>3
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>3
[3,3,2,2]=>3
[3,3,2,1,1]=>3
[3,3,1,1,1,1]=>3
[3,2,2,2,1]=>3
[3,2,2,1,1,1]=>3
[3,2,1,1,1,1,1]=>3
[3,1,1,1,1,1,1,1]=>2
[2,2,2,2,2]=>2
[2,2,2,2,1,1]=>2
[2,2,2,1,1,1,1]=>2
[2,2,1,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>1
[6,5]=>2
[5,5,1]=>3
[5,4,2]=>3
[5,4,1,1]=>3
[5,3,3]=>3
[5,3,2,1]=>4
[5,3,1,1,1]=>3
[5,2,2,2]=>3
[5,2,2,1,1]=>3
[4,4,3]=>3
[4,4,2,1]=>4
[4,4,1,1,1]=>3
[4,3,3,1]=>4
[4,3,2,2]=>4
[4,3,2,1,1]=>4
[4,2,2,2,1]=>3
[3,3,3,2]=>3
[3,3,3,1,1]=>3
[3,3,2,2,1]=>3
[3,2,2,2,2]=>3
[2,2,2,2,2,1]=>2
[6,6]=>2
[6,4,2]=>3
[5,5,2]=>3
[5,4,3]=>3
[5,4,2,1]=>4
[5,4,1,1,1]=>3
[5,3,3,1]=>4
[5,3,2,2]=>4
[5,3,2,1,1]=>4
[5,2,2,2,1]=>3
[4,4,4]=>3
[4,4,3,1]=>4
[4,4,2,2]=>4
[4,4,2,1,1]=>4
[4,3,3,2]=>4
[4,3,3,1,1]=>4
[4,3,2,2,1]=>4
[3,3,3,3]=>3
[3,3,3,2,1]=>3
[3,3,2,2,2]=>3
[3,3,2,2,1,1]=>3
[2,2,2,2,2,2]=>2
[5,5,3]=>3
[5,4,4]=>3
[5,4,3,1]=>4
[5,4,2,2]=>4
[5,4,2,1,1]=>4
[5,3,3,2]=>4
[5,3,3,1,1]=>4
[5,3,2,2,1]=>4
[4,4,4,1]=>4
[4,4,3,2]=>4
[4,4,3,1,1]=>4
[4,4,2,2,1]=>4
[4,3,3,3]=>4
[4,3,3,2,1]=>4
[3,3,3,3,1]=>3
[3,3,3,2,2]=>3
[5,5,4]=>3
[5,4,3,2]=>4
[5,4,3,1,1]=>4
[5,4,2,2,1]=>4
[5,3,3,2,1]=>4
[4,4,4,2]=>4
[4,4,3,3]=>4
[4,4,3,2,1]=>4
[3,3,3,3,2]=>3
[5,5,5]=>3
[5,4,3,2,1]=>5
[4,4,4,3]=>4
[3,3,3,3,3]=>3
[7,5,3,1]=>4
[4,4,4,4]=>4
[7,5,4,3,1]=>5
[6,5,4,3,2,1]=>6
[11,7,5,1]=>4
[9,7,5,3,1]=>5
[7,6,5,4,3,2,1]=>7
[9,7,5,5,3,1]=>6
[11,9,7,5,3,1]=>6
[11,8,7,5,4,1]=>6
[8,7,6,5,4,3,2,1]=>8
[11,9,7,6,5,3,1]=>7
[13,11,9,7,5,3,1]=>7
[13,11,9,7,7,5,3,1]=>8
[17,13,11,9,7,5,1]=>7
[15,13,11,9,7,5,3,1]=>8
[29,23,19,17,13,11,7,1]=>8
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The side length of the largest staircase partition fitting into a partition.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
References
Code
def statistic(la): return min(p + i for i, p in enumerate(la + [0])) def Ferrers_graph(mu): """Return the graph with vertices being the cells of the Ferrers diagram, two vertices are connected if the cells are in the same row or column. """ V = mu.cells() G = Graph([V, lambda a,b: a[0] == b[0] or a[1] == b[1]], loops=False, multiedges=False) return G @cached_function def all_colouring_partitions(mu): if len(mu) > mu[0]: return all_colouring_partitions(mu.conjugate()) from sage.graphs.graph_coloring import all_graph_colorings res = dict() for c in all_graph_colorings(Ferrers_graph(mu), max(mu[0], len(mu))): la = Partition(sorted((len(v) for v in c.values()), reverse=True)) res[la] = res.get(la, 0) + 1 return res def statistic_alternative(mu): mu = Partition(mu) return max(la[0] for la in all_colouring_partitions(mu))
Created
Apr 19, 2017 at 10:21 by Martin Rubey
Updated
Dec 22, 2020 at 13:56 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!