Identifier
Values
([],1) => ([],1) => ([],1) => [1] => 1
([(0,1)],2) => ([(0,1)],2) => ([],2) => [1,1] => 1
([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => ([],3) => [1,1,1] => 1
([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(2,3)],4) => [2,1,1] => 2
([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => ([],4) => [1,1,1,1] => 1
([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(0,1),(0,2),(0,3),(1,4),(2,4),(3,4)],5) => ([(2,3),(2,4),(3,4)],5) => [3,1,1] => 2
([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(0,2),(0,3),(1,4),(2,4),(3,1)],5) => ([(2,4),(3,4)],5) => [3,1,1] => 2
([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(3,4)],5) => [2,1,1,1] => 2
([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([],5) => [1,1,1,1,1] => 1
([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(3,4)],5) => [2,1,1,1] => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,5)],6) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 2
([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(0,2),(0,3),(0,4),(1,5),(2,5),(3,5),(4,1)],6) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 2
([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,5),(4,1),(4,2)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 2
([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,5),(4,1),(4,2),(4,3)],6) => ([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 2
([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(0,4),(1,5),(2,5),(3,2),(4,1),(4,3)],6) => ([(3,5),(4,5)],6) => [3,1,1,1] => 2
([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(4,5)],6) => [2,1,1,1,1] => 2
([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(0,2),(0,4),(1,5),(2,5),(3,1),(4,3)],6) => ([(2,5),(3,5),(4,5)],6) => [4,1,1] => 2
([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(4,5)],6) => [2,1,1,1,1] => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(4,5)],6) => ([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => 2
([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(4,5)],6) => [2,1,1,1,1] => 2
([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(0,2),(0,3),(0,4),(2,5),(3,5),(4,5),(5,1)],6) => ([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => 2
([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(0,3),(0,4),(1,5),(2,5),(3,2),(4,1)],6) => ([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => 2
([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(2,5),(3,4),(4,5)],6) => [4,1,1] => 2
([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([],6) => [1,1,1,1,1,1] => 1
([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(0,3),(0,4),(1,5),(3,5),(4,1),(5,2)],6) => ([(3,5),(4,5)],6) => [3,1,1,1] => 2
([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => ([(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,6),(5,1),(5,2),(5,3),(5,4)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2),(5,4)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(5,1),(5,2),(5,3),(6,4)],7) => ([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 2
([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7) => ([(0,3),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1),(5,4)],7) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,6),(4,2),(4,3),(5,1),(5,4)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,1),(4,2),(5,6)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(0,5),(2,6),(3,6),(4,1),(5,2),(5,3),(6,4)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => 2
([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => ([(0,5),(1,6),(2,6),(3,2),(4,1),(5,3),(5,4)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => 2
([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(0,4),(1,6),(2,5),(3,1),(3,5),(4,2),(4,3),(5,6)],7) => ([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => 2
([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => ([(0,2),(0,3),(0,5),(1,6),(2,6),(3,6),(4,1),(5,4)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,6),(4,5),(5,1),(5,2),(5,3)],7) => ([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,5),(6,1)],7) => ([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(3,6),(4,5)],7) => [2,2,1,1,1] => 2
([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(0,1),(0,2),(0,3),(0,4),(1,6),(2,6),(3,6),(4,5),(6,5)],7) => ([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,6),(4,6),(5,1),(6,5)],7) => ([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => 2
([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(0,5),(2,6),(3,6),(4,6),(5,6),(6,1)],7) => ([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => 2
([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(0,1),(0,2),(0,3),(1,5),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(0,2),(0,3),(2,6),(3,6),(4,1),(5,4),(6,5)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => 2
([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(0,2),(0,3),(0,4),(2,6),(3,5),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,6),(4,1),(4,6),(6,5)],7) => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(0,3),(0,4),(0,5),(1,6),(3,6),(4,6),(5,1),(6,2)],7) => ([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(0,3),(0,4),(0,5),(1,6),(2,6),(3,6),(4,2),(5,1)],7) => ([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,5),(5,6)],7) => ([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(4,3),(4,5),(5,6)],7) => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(0,3),(0,4),(2,6),(3,5),(4,2),(4,5),(5,6),(6,1)],7) => ([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => 2
([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,2),(4,6),(6,1)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => 2
([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,6),(4,3),(5,1),(5,2)],7) => ([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,5),(4,1),(4,2),(4,5),(5,6)],7) => ([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(0,5),(1,6),(2,6),(3,4),(4,2),(5,1),(5,3)],7) => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,5),(4,1),(4,2),(5,6)],7) => ([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(0,5),(1,6),(2,6),(4,2),(5,1),(5,4),(6,3)],7) => ([(4,6),(5,6)],7) => [3,1,1,1,1] => 2
([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,6),(5,1),(5,2),(6,3)],7) => ([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,6),(3,2),(3,5),(4,1),(4,5),(5,6)],7) => ([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(0,3),(0,4),(1,6),(2,5),(3,2),(4,1),(4,5),(5,6)],7) => ([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(0,2),(0,5),(1,6),(2,6),(3,4),(4,1),(5,3)],7) => ([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(0,4),(1,6),(2,6),(3,5),(4,3),(5,1),(5,2)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => 2
([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => ([(0,2),(0,3),(0,4),(1,5),(2,6),(3,5),(4,1),(5,6)],7) => ([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => 2
([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(0,3),(0,5),(2,6),(3,6),(4,1),(5,2),(6,4)],7) => ([(4,6),(5,6)],7) => [3,1,1,1,1] => 2
([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => ([(0,4),(0,5),(1,6),(2,6),(3,2),(4,3),(5,1)],7) => ([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => 2
([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(0,4),(1,6),(2,6),(3,2),(4,5),(5,1),(5,3)],7) => ([(4,6),(5,6)],7) => [3,1,1,1,1] => 2
([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(0,2),(0,4),(1,6),(2,5),(3,1),(3,5),(4,3),(5,6)],7) => ([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => 2
([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => ([],7) => [1,1,1,1,1,1,1] => 1
([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => ([(0,4),(0,5),(1,6),(2,6),(4,2),(5,1),(6,3)],7) => ([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => 2
([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(0,3),(0,5),(1,6),(3,6),(4,1),(5,4),(6,2)],7) => ([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => 2
([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(5,6)],7) => [2,1,1,1,1,1] => 2
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8) => ([(0,4),(1,6),(2,5),(3,5),(3,6),(4,1),(4,2),(4,3),(5,7),(6,7)],8) => ([(3,6),(3,7),(4,5),(4,7),(5,6),(6,7)],8) => [5,1,1,1] => 2
([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => ([(0,5),(1,7),(2,7),(3,6),(4,6),(5,1),(5,2),(7,3),(7,4)],8) => ([(4,7),(5,6)],8) => [2,2,1,1,1,1] => 2
([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => ([(0,1),(0,2),(0,3),(0,4),(1,5),(2,5),(3,6),(4,7),(5,7),(7,6)],8) => ([(2,7),(3,6),(3,7),(4,5),(4,6),(4,7),(5,6),(5,7),(6,7)],8) => [6,1,1] => 2
([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => ([(0,3),(0,4),(1,6),(2,6),(3,7),(4,7),(5,1),(5,2),(7,5)],8) => ([(4,7),(5,6)],8) => [2,2,1,1,1,1] => 2
([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => ([(0,4),(0,5),(1,6),(2,6),(4,7),(5,7),(6,3),(7,1),(7,2)],8) => ([(4,7),(5,6)],8) => [2,2,1,1,1,1] => 2
([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(0,3),(0,5),(1,7),(3,6),(4,2),(5,1),(5,6),(6,7),(7,4)],8) => ([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => 2
([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(0,5),(2,7),(3,6),(4,2),(4,6),(5,3),(5,4),(6,7),(7,1)],8) => ([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => 2
([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8) => ([(0,5),(0,6),(1,7),(2,7),(3,2),(4,1),(5,3),(6,4)],8) => ([(2,5),(2,6),(2,7),(3,5),(3,6),(3,7),(4,5),(4,6),(4,7)],8) => [6,1,1] => 2
([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(0,4),(1,7),(2,6),(3,1),(3,6),(4,5),(5,2),(5,3),(6,7)],8) => ([(4,7),(5,6),(6,7)],8) => [4,1,1,1,1] => 2
([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([(0,7),(2,4),(3,2),(4,6),(5,3),(6,1),(7,5)],8) => ([],8) => [1,1,1,1,1,1,1,1] => 1
([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(0,5),(1,6),(2,7),(3,4),(3,6),(4,2),(4,8),(5,1),(5,3),(6,8),(8,7)],9) => ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9) => [6,1,1,1] => 2
([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(0,5),(1,7),(2,8),(3,6),(4,3),(4,8),(5,2),(5,4),(6,7),(8,1),(8,6)],9) => ([(3,8),(4,7),(5,6),(6,8),(7,8)],9) => [6,1,1,1] => 2
([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(0,3),(0,5),(2,8),(3,6),(4,2),(4,7),(5,4),(5,6),(6,7),(7,8),(8,1)],9) => ([(3,8),(4,7),(5,6),(5,7),(6,8),(7,8)],9) => [6,1,1,1] => 2
([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(0,4),(0,5),(1,6),(3,7),(4,8),(5,1),(5,8),(6,7),(7,2),(8,3),(8,6)],9) => ([(3,8),(4,7),(5,6),(6,8),(7,8)],9) => [6,1,1,1] => 2
([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10) => ([(0,5),(1,8),(2,7),(3,2),(3,6),(4,1),(4,6),(5,3),(5,4),(6,7),(6,8),(7,9),(8,9)],10) => ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10) => [7,1,1,1] => 2
([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10) => ([(0,4),(0,5),(2,8),(3,7),(4,3),(4,6),(5,2),(5,6),(6,7),(6,8),(7,9),(8,9),(9,1)],10) => ([(3,6),(3,9),(4,5),(4,9),(5,8),(6,8),(7,8),(7,9),(8,9)],10) => [7,1,1,1] => 2
([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => ([(0,6),(1,7),(2,9),(4,8),(5,1),(5,9),(6,2),(6,5),(7,8),(8,3),(9,4),(9,7)],10) => ([(4,9),(5,8),(6,7),(7,9),(8,9)],10) => [6,1,1,1,1] => 2
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The side length of the largest staircase partition fitting into a partition.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
For an integer partition $(\lambda_1\geq \lambda_2\geq\dots)$ this is the largest integer $k$ such that $\lambda_i > k-i$ for $i\in\{1,\dots,k\}$.
In other words, this is the length of a longest (strict) north-east chain of cells in the Ferrers diagram of the partition, using the English convention. Equivalently, this is the maximal number of non-attacking rooks that can be placed on the Ferrers diagram.
This is also the maximal number of occurrences of a colour in a proper colouring of a Ferrers diagram.
A colouring of a Ferrers diagram is proper if no two cells in a row or in a column have the same colour. The minimal number of colours needed is the maximum of the length and the first part of the partition, because we can restrict a latin square to the shape. We can associate to each colouring the integer partition recording how often each colour is used, see [1]. This statistic records the largest part occurring in any of these partitions.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
to poset
Description
Return the poset corresponding to the lattice.
Map
incomparability graph
Description
The incomparability graph of a poset.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!