Identifier
-
Mp00199:
Dyck paths
—prime Dyck path⟶
Dyck paths
Mp00121: Dyck paths —Cori-Le Borgne involution⟶ Dyck paths
Mp00119: Dyck paths —to 321-avoiding permutation (Krattenthaler)⟶ Permutations
St000795: Permutations ⟶ ℤ
Values
[1,0] => [1,1,0,0] => [1,1,0,0] => [2,1] => 1
[1,0,1,0] => [1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,3,2] => 1
[1,1,0,0] => [1,1,1,0,0,0] => [1,1,1,0,0,0] => [3,1,2] => 2
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,1,0,0] => [1,2,4,3] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0] => [2,4,1,3] => 4
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0] => [3,1,2,4] => 2
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [1,0,1,1,1,0,0,0] => [1,4,2,3] => 2
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,0] => [4,1,2,3] => 3
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,2,3,5,4] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [2,3,5,1,4] => 6
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [2,4,1,3,5] => 4
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,3,5,2,4] => 4
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [3,5,1,2,4] => 5
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => [3,1,2,4,5] => 2
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [2,1,5,3,4] => 3
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,4,2,3,5] => 2
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,2,5,3,4] => 2
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,5,1,3,4] => 5
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,5,3] => 6
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [4,1,2,3,5] => 3
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,5,2,3,4] => 3
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [5,1,2,3,4] => 4
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,6,5] => 1
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [2,3,4,6,1,5] => 8
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => [2,3,5,1,4,6] => 6
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0] => [1,3,4,6,2,5] => 6
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,6,1,2,5] => 7
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0,1,0] => [2,4,1,3,5,6] => 4
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [2,1,4,6,3,5] => 5
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => [1,3,5,2,4,6] => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,4,6,3,5] => 4
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [2,4,6,1,3,5] => 7
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [3,5,1,2,6,4] => 8
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0,1,0] => [3,5,1,2,4,6] => 5
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0] => [1,4,6,2,3,5] => 5
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [4,6,1,2,3,5] => 6
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [3,1,2,4,5,6] => 2
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,1,1,0,0,0] => [2,3,1,6,4,5] => 5
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [2,1,5,3,4,6] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,3,2,6,4,5] => 3
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,1,6,2,4,5] => 7
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,4,2,3,5,6] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [2,1,3,6,4,5] => 3
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,5,3,4,6] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,6,4,5] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [2,3,6,1,4,5] => 7
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [2,5,1,3,6,4] => 8
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0,1,0] => [2,5,1,3,4,6] => 5
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0] => [1,3,6,2,4,5] => 5
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [3,6,1,2,4,5] => 6
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [4,1,2,5,6,3] => 8
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [4,1,2,3,6,5] => 4
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [4,1,2,5,3,6] => 6
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [4,1,2,3,5,6] => 3
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [2,1,6,3,4,5] => 4
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,1,0,0,0,1,0,0] => [1,5,2,3,6,4] => 6
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,5,2,3,4,6] => 3
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,6,3,4,5] => 3
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,6,1,3,4,5] => 6
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [5,1,2,6,3,4] => 8
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,6,4] => 7
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [5,1,2,3,4,6] => 4
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,6,2,3,4,5] => 4
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [6,1,2,3,4,5] => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,2,3,4,5,7,6] => 1
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,1,1,0,0,0] => [1,3,4,5,7,2,6] => 8
[1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,1,0,1,1,0,0,0,1,0] => [1,3,4,6,2,5,7] => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,2,4,5,7,3,6] => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,1,0,1,1,0,0,0,0] => [1,4,5,7,2,3,6] => 7
[1,0,1,1,0,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,1,0,1,1,0,0,0] => [1,3,2,5,7,4,6] => 5
[1,0,1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0,1,0] => [1,3,5,2,4,6,7] => 4
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,1,0,0,0,1,0] => [1,2,4,6,3,5,7] => 4
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,2,3,5,7,4,6] => 4
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,1,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,1,0,1,1,0,0,0,0] => [1,3,5,7,2,4,6] => 7
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,1,0,1,1,0,0,0,1,0,0] => [1,4,6,2,3,7,5] => 8
[1,0,1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,1,0,1,1,0,0,0,0,1,0] => [1,4,6,2,3,5,7] => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,1,0,1,1,0,0,0,0] => [1,2,5,7,3,4,6] => 5
[1,1,0,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,1,1,0,1,0,0,0] => [1,0,1,1,0,1,0,0,1,1,1,0,0,0] => [1,3,4,2,7,5,6] => 5
[1,1,0,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,1,0,0,1,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0,1,0] => [1,3,2,6,4,5,7] => 3
[1,1,0,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,1,0,0,0] => [1,0,1,0,1,1,0,0,1,1,1,0,0,0] => [1,2,4,3,7,5,6] => 3
[1,1,0,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,1,1,0,1,0,0,0,0] => [1,0,1,1,1,0,0,1,1,1,0,0,0,0] => [1,4,2,7,3,5,6] => 7
[1,1,0,1,0,0,1,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0,1,0] => [1,4,2,3,5,6,7] => 2
[1,1,0,1,0,0,1,1,0,1,0,0] => [1,1,1,0,1,0,0,1,1,0,1,0,0,0] => [1,0,1,1,0,0,1,0,1,1,1,0,0,0] => [1,3,2,4,7,5,6] => 3
[1,1,0,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0,1,0] => [1,2,5,3,4,6,7] => 2
[1,1,0,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,1,0,0,1,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0,1,0] => [1,2,3,6,4,5,7] => 2
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,1,0,0,0] => [1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,2,3,4,7,5,6] => 2
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,1,0,1,1,1,0,0,0,0] => [1,3,4,7,2,5,6] => 7
[1,1,0,1,1,0,1,0,0,0,1,0] => [1,1,1,0,1,1,0,1,0,0,0,1,0,0] => [1,0,1,1,0,1,1,1,0,0,0,1,0,0] => [1,3,6,2,4,7,5] => 8
[1,1,0,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,1,0,1,0,0,1,0,0,0] => [1,0,1,1,0,1,1,1,0,0,0,0,1,0] => [1,3,6,2,4,5,7] => 5
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,1,0,1,1,1,0,0,0,0] => [1,2,4,7,3,5,6] => 5
[1,1,1,0,0,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,1,0,1,0,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,3,2,7,4,5,6] => 4
[1,1,1,0,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,1,0,0,0,1,0,0] => [1,2,6,3,4,7,5] => 6
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,1,0,0,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0,1,0] => [1,2,6,3,4,5,7] => 3
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,2,3,7,4,5,6] => 3
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,1,1,0,1,1,0,1,0,0,0,0,0] => [1,0,1,1,0,1,1,1,1,0,0,0,0,0] => [1,3,7,2,4,5,6] => 6
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,1,0,0,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,2,7,3,4,5,6] => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The mad of a permutation.
According to [1], this is the sum of twice the number of occurrences of the vincular pattern of $(2\underline{31})$ plus the number of occurrences of the vincular patterns $(\underline{31}2)$ and $(\underline{21})$, where matches of the underlined letters must be adjacent.
According to [1], this is the sum of twice the number of occurrences of the vincular pattern of $(2\underline{31})$ plus the number of occurrences of the vincular patterns $(\underline{31}2)$ and $(\underline{21})$, where matches of the underlined letters must be adjacent.
Map
to 321-avoiding permutation (Krattenthaler)
Description
Krattenthaler's bijection to 321-avoiding permutations.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Draw the path of semilength $n$ in an $n\times n$ square matrix, starting at the upper left corner, with right and down steps, and staying below the diagonal. Then the permutation matrix is obtained by placing ones into the cells corresponding to the peaks of the path and placing ones into the remaining columns from left to right, such that the row indices of the cells increase.
Map
Cori-Le Borgne involution
Description
The Cori-Le Borgne involution on Dyck paths.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Append an additional down step to the Dyck path and consider its (literal) reversal. The image of the involution is then the unique rotation of this word which is a Dyck word followed by an additional down step. Alternatively, it is the composite $\zeta\circ\mathrm{rev}\circ\zeta^{(-1)}$, where $\zeta$ is Mp00030zeta map.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!