Identifier
-
Mp00077:
Semistandard tableaux
—shape⟶
Integer partitions
St000812: Integer partitions ⟶ ℤ
Values
[[1,2]] => [2] => 2
[[2,2]] => [2] => 2
[[1],[2]] => [1,1] => 3
[[1,3]] => [2] => 2
[[2,3]] => [2] => 2
[[3,3]] => [2] => 2
[[1],[3]] => [1,1] => 3
[[2],[3]] => [1,1] => 3
[[1,1,2]] => [3] => 3
[[1,2,2]] => [3] => 3
[[2,2,2]] => [3] => 3
[[1,1],[2]] => [2,1] => 6
[[1,2],[2]] => [2,1] => 6
[[1,4]] => [2] => 2
[[2,4]] => [2] => 2
[[3,4]] => [2] => 2
[[4,4]] => [2] => 2
[[1],[4]] => [1,1] => 3
[[2],[4]] => [1,1] => 3
[[3],[4]] => [1,1] => 3
[[1,1,3]] => [3] => 3
[[1,2,3]] => [3] => 3
[[1,3,3]] => [3] => 3
[[2,2,3]] => [3] => 3
[[2,3,3]] => [3] => 3
[[3,3,3]] => [3] => 3
[[1,1],[3]] => [2,1] => 6
[[1,2],[3]] => [2,1] => 6
[[1,3],[2]] => [2,1] => 6
[[1,3],[3]] => [2,1] => 6
[[2,2],[3]] => [2,1] => 6
[[2,3],[3]] => [2,1] => 6
[[1],[2],[3]] => [1,1,1] => 10
[[1,1,1,2]] => [4] => 5
[[1,1,2,2]] => [4] => 5
[[1,2,2,2]] => [4] => 5
[[2,2,2,2]] => [4] => 5
[[1,1,1],[2]] => [3,1] => 12
[[1,1,2],[2]] => [3,1] => 12
[[1,2,2],[2]] => [3,1] => 12
[[1,1],[2,2]] => [2,2] => 16
[[1,5]] => [2] => 2
[[2,5]] => [2] => 2
[[3,5]] => [2] => 2
[[4,5]] => [2] => 2
[[5,5]] => [2] => 2
[[1],[5]] => [1,1] => 3
[[2],[5]] => [1,1] => 3
[[3],[5]] => [1,1] => 3
[[4],[5]] => [1,1] => 3
[[1,1,4]] => [3] => 3
[[1,2,4]] => [3] => 3
[[1,3,4]] => [3] => 3
[[1,4,4]] => [3] => 3
[[2,2,4]] => [3] => 3
[[2,3,4]] => [3] => 3
[[2,4,4]] => [3] => 3
[[3,3,4]] => [3] => 3
[[3,4,4]] => [3] => 3
[[4,4,4]] => [3] => 3
[[1,1],[4]] => [2,1] => 6
[[1,2],[4]] => [2,1] => 6
[[1,4],[2]] => [2,1] => 6
[[1,3],[4]] => [2,1] => 6
[[1,4],[3]] => [2,1] => 6
[[1,4],[4]] => [2,1] => 6
[[2,2],[4]] => [2,1] => 6
[[2,3],[4]] => [2,1] => 6
[[2,4],[3]] => [2,1] => 6
[[2,4],[4]] => [2,1] => 6
[[3,3],[4]] => [2,1] => 6
[[3,4],[4]] => [2,1] => 6
[[1],[2],[4]] => [1,1,1] => 10
[[1],[3],[4]] => [1,1,1] => 10
[[2],[3],[4]] => [1,1,1] => 10
[[1,1,1,3]] => [4] => 5
[[1,1,2,3]] => [4] => 5
[[1,1,3,3]] => [4] => 5
[[1,2,2,3]] => [4] => 5
[[1,2,3,3]] => [4] => 5
[[1,3,3,3]] => [4] => 5
[[2,2,2,3]] => [4] => 5
[[2,2,3,3]] => [4] => 5
[[2,3,3,3]] => [4] => 5
[[3,3,3,3]] => [4] => 5
[[1,1,1],[3]] => [3,1] => 12
[[1,1,2],[3]] => [3,1] => 12
[[1,1,3],[2]] => [3,1] => 12
[[1,1,3],[3]] => [3,1] => 12
[[1,2,2],[3]] => [3,1] => 12
[[1,2,3],[2]] => [3,1] => 12
[[1,2,3],[3]] => [3,1] => 12
[[1,3,3],[2]] => [3,1] => 12
[[1,3,3],[3]] => [3,1] => 12
[[2,2,2],[3]] => [3,1] => 12
[[2,2,3],[3]] => [3,1] => 12
[[2,3,3],[3]] => [3,1] => 12
[[1,1],[2,3]] => [2,2] => 16
[[1,1],[3,3]] => [2,2] => 16
[[1,2],[2,3]] => [2,2] => 16
[[1,2],[3,3]] => [2,2] => 16
>>> Load all 2544 entries. <<<[[2,2],[3,3]] => [2,2] => 16
[[1,1],[2],[3]] => [2,1,1] => 27
[[1,2],[2],[3]] => [2,1,1] => 27
[[1,3],[2],[3]] => [2,1,1] => 27
[[1,1,1,1,2]] => [5] => 7
[[1,1,1,2,2]] => [5] => 7
[[1,1,2,2,2]] => [5] => 7
[[1,2,2,2,2]] => [5] => 7
[[2,2,2,2,2]] => [5] => 7
[[1,1,1,1],[2]] => [4,1] => 20
[[1,1,1,2],[2]] => [4,1] => 20
[[1,1,2,2],[2]] => [4,1] => 20
[[1,2,2,2],[2]] => [4,1] => 20
[[1,1,1],[2,2]] => [3,2] => 32
[[1,1,2],[2,2]] => [3,2] => 32
[[1,6]] => [2] => 2
[[2,6]] => [2] => 2
[[3,6]] => [2] => 2
[[4,6]] => [2] => 2
[[5,6]] => [2] => 2
[[6,6]] => [2] => 2
[[1],[6]] => [1,1] => 3
[[2],[6]] => [1,1] => 3
[[3],[6]] => [1,1] => 3
[[4],[6]] => [1,1] => 3
[[5],[6]] => [1,1] => 3
[[1,1,5]] => [3] => 3
[[1,2,5]] => [3] => 3
[[1,3,5]] => [3] => 3
[[1,4,5]] => [3] => 3
[[1,5,5]] => [3] => 3
[[2,2,5]] => [3] => 3
[[2,3,5]] => [3] => 3
[[2,4,5]] => [3] => 3
[[2,5,5]] => [3] => 3
[[3,3,5]] => [3] => 3
[[3,4,5]] => [3] => 3
[[3,5,5]] => [3] => 3
[[4,4,5]] => [3] => 3
[[4,5,5]] => [3] => 3
[[5,5,5]] => [3] => 3
[[1,1],[5]] => [2,1] => 6
[[1,2],[5]] => [2,1] => 6
[[1,5],[2]] => [2,1] => 6
[[1,3],[5]] => [2,1] => 6
[[1,5],[3]] => [2,1] => 6
[[1,4],[5]] => [2,1] => 6
[[1,5],[4]] => [2,1] => 6
[[1,5],[5]] => [2,1] => 6
[[2,2],[5]] => [2,1] => 6
[[2,3],[5]] => [2,1] => 6
[[2,5],[3]] => [2,1] => 6
[[2,4],[5]] => [2,1] => 6
[[2,5],[4]] => [2,1] => 6
[[2,5],[5]] => [2,1] => 6
[[3,3],[5]] => [2,1] => 6
[[3,4],[5]] => [2,1] => 6
[[3,5],[4]] => [2,1] => 6
[[3,5],[5]] => [2,1] => 6
[[4,4],[5]] => [2,1] => 6
[[4,5],[5]] => [2,1] => 6
[[1],[2],[5]] => [1,1,1] => 10
[[1],[3],[5]] => [1,1,1] => 10
[[1],[4],[5]] => [1,1,1] => 10
[[2],[3],[5]] => [1,1,1] => 10
[[2],[4],[5]] => [1,1,1] => 10
[[3],[4],[5]] => [1,1,1] => 10
[[1,1,1,4]] => [4] => 5
[[1,1,2,4]] => [4] => 5
[[1,1,3,4]] => [4] => 5
[[1,1,4,4]] => [4] => 5
[[1,2,2,4]] => [4] => 5
[[1,2,3,4]] => [4] => 5
[[1,2,4,4]] => [4] => 5
[[1,3,3,4]] => [4] => 5
[[1,3,4,4]] => [4] => 5
[[1,4,4,4]] => [4] => 5
[[2,2,2,4]] => [4] => 5
[[2,2,3,4]] => [4] => 5
[[2,2,4,4]] => [4] => 5
[[2,3,3,4]] => [4] => 5
[[2,3,4,4]] => [4] => 5
[[2,4,4,4]] => [4] => 5
[[3,3,3,4]] => [4] => 5
[[3,3,4,4]] => [4] => 5
[[3,4,4,4]] => [4] => 5
[[4,4,4,4]] => [4] => 5
[[1,1,1],[4]] => [3,1] => 12
[[1,1,2],[4]] => [3,1] => 12
[[1,1,4],[2]] => [3,1] => 12
[[1,1,3],[4]] => [3,1] => 12
[[1,1,4],[3]] => [3,1] => 12
[[1,1,4],[4]] => [3,1] => 12
[[1,2,2],[4]] => [3,1] => 12
[[1,2,4],[2]] => [3,1] => 12
[[1,2,3],[4]] => [3,1] => 12
[[1,2,4],[3]] => [3,1] => 12
[[1,3,4],[2]] => [3,1] => 12
[[1,2,4],[4]] => [3,1] => 12
[[1,4,4],[2]] => [3,1] => 12
[[1,3,3],[4]] => [3,1] => 12
[[1,3,4],[3]] => [3,1] => 12
[[1,3,4],[4]] => [3,1] => 12
[[1,4,4],[3]] => [3,1] => 12
[[1,4,4],[4]] => [3,1] => 12
[[2,2,2],[4]] => [3,1] => 12
[[2,2,3],[4]] => [3,1] => 12
[[2,2,4],[3]] => [3,1] => 12
[[2,2,4],[4]] => [3,1] => 12
[[2,3,3],[4]] => [3,1] => 12
[[2,3,4],[3]] => [3,1] => 12
[[2,3,4],[4]] => [3,1] => 12
[[2,4,4],[3]] => [3,1] => 12
[[2,4,4],[4]] => [3,1] => 12
[[3,3,3],[4]] => [3,1] => 12
[[3,3,4],[4]] => [3,1] => 12
[[3,4,4],[4]] => [3,1] => 12
[[1,1],[2,4]] => [2,2] => 16
[[1,1],[3,4]] => [2,2] => 16
[[1,1],[4,4]] => [2,2] => 16
[[1,2],[2,4]] => [2,2] => 16
[[1,2],[3,4]] => [2,2] => 16
[[1,3],[2,4]] => [2,2] => 16
[[1,2],[4,4]] => [2,2] => 16
[[1,3],[3,4]] => [2,2] => 16
[[1,3],[4,4]] => [2,2] => 16
[[2,2],[3,4]] => [2,2] => 16
[[2,2],[4,4]] => [2,2] => 16
[[2,3],[3,4]] => [2,2] => 16
[[2,3],[4,4]] => [2,2] => 16
[[3,3],[4,4]] => [2,2] => 16
[[1,1],[2],[4]] => [2,1,1] => 27
[[1,1],[3],[4]] => [2,1,1] => 27
[[1,2],[2],[4]] => [2,1,1] => 27
[[1,2],[3],[4]] => [2,1,1] => 27
[[1,3],[2],[4]] => [2,1,1] => 27
[[1,4],[2],[3]] => [2,1,1] => 27
[[1,4],[2],[4]] => [2,1,1] => 27
[[1,3],[3],[4]] => [2,1,1] => 27
[[1,4],[3],[4]] => [2,1,1] => 27
[[2,2],[3],[4]] => [2,1,1] => 27
[[2,3],[3],[4]] => [2,1,1] => 27
[[2,4],[3],[4]] => [2,1,1] => 27
[[1],[2],[3],[4]] => [1,1,1,1] => 47
[[1,1,1,1,3]] => [5] => 7
[[1,1,1,2,3]] => [5] => 7
[[1,1,1,3,3]] => [5] => 7
[[1,1,2,2,3]] => [5] => 7
[[1,1,2,3,3]] => [5] => 7
[[1,1,3,3,3]] => [5] => 7
[[1,2,2,2,3]] => [5] => 7
[[1,2,2,3,3]] => [5] => 7
[[1,2,3,3,3]] => [5] => 7
[[1,3,3,3,3]] => [5] => 7
[[2,2,2,2,3]] => [5] => 7
[[2,2,2,3,3]] => [5] => 7
[[2,2,3,3,3]] => [5] => 7
[[2,3,3,3,3]] => [5] => 7
[[3,3,3,3,3]] => [5] => 7
[[1,1,1,1],[3]] => [4,1] => 20
[[1,1,1,2],[3]] => [4,1] => 20
[[1,1,1,3],[2]] => [4,1] => 20
[[1,1,1,3],[3]] => [4,1] => 20
[[1,1,2,2],[3]] => [4,1] => 20
[[1,1,2,3],[2]] => [4,1] => 20
[[1,1,2,3],[3]] => [4,1] => 20
[[1,1,3,3],[2]] => [4,1] => 20
[[1,1,3,3],[3]] => [4,1] => 20
[[1,2,2,2],[3]] => [4,1] => 20
[[1,2,2,3],[2]] => [4,1] => 20
[[1,2,2,3],[3]] => [4,1] => 20
[[1,2,3,3],[2]] => [4,1] => 20
[[1,2,3,3],[3]] => [4,1] => 20
[[1,3,3,3],[2]] => [4,1] => 20
[[1,3,3,3],[3]] => [4,1] => 20
[[2,2,2,2],[3]] => [4,1] => 20
[[2,2,2,3],[3]] => [4,1] => 20
[[2,2,3,3],[3]] => [4,1] => 20
[[2,3,3,3],[3]] => [4,1] => 20
[[1,1,1],[2,3]] => [3,2] => 32
[[1,1,1],[3,3]] => [3,2] => 32
[[1,1,2],[2,3]] => [3,2] => 32
[[1,1,3],[2,2]] => [3,2] => 32
[[1,1,2],[3,3]] => [3,2] => 32
[[1,1,3],[2,3]] => [3,2] => 32
[[1,1,3],[3,3]] => [3,2] => 32
[[1,2,2],[2,3]] => [3,2] => 32
[[1,2,2],[3,3]] => [3,2] => 32
[[1,2,3],[2,3]] => [3,2] => 32
[[1,2,3],[3,3]] => [3,2] => 32
[[2,2,2],[3,3]] => [3,2] => 32
[[2,2,3],[3,3]] => [3,2] => 32
[[1,1,1],[2],[3]] => [3,1,1] => 56
[[1,1,2],[2],[3]] => [3,1,1] => 56
[[1,1,3],[2],[3]] => [3,1,1] => 56
[[1,2,2],[2],[3]] => [3,1,1] => 56
[[1,2,3],[2],[3]] => [3,1,1] => 56
[[1,3,3],[2],[3]] => [3,1,1] => 56
[[1,1],[2,2],[3]] => [2,2,1] => 76
[[1,1],[2,3],[3]] => [2,2,1] => 76
[[1,2],[2,3],[3]] => [2,2,1] => 76
[[1,1,1,1,1,2]] => [6] => 11
[[1,1,1,1,2,2]] => [6] => 11
[[1,1,1,2,2,2]] => [6] => 11
[[1,1,2,2,2,2]] => [6] => 11
[[1,2,2,2,2,2]] => [6] => 11
[[2,2,2,2,2,2]] => [6] => 11
[[1,1,1,1,1],[2]] => [5,1] => 35
[[1,1,1,1,2],[2]] => [5,1] => 35
[[1,1,1,2,2],[2]] => [5,1] => 35
[[1,1,2,2,2],[2]] => [5,1] => 35
[[1,2,2,2,2],[2]] => [5,1] => 35
[[1,1,1,1],[2,2]] => [4,2] => 65
[[1,1,1,2],[2,2]] => [4,2] => 65
[[1,1,2,2],[2,2]] => [4,2] => 65
[[1,1,1],[2,2,2]] => [3,3] => 79
[[1,7]] => [2] => 2
[[2,7]] => [2] => 2
[[3,7]] => [2] => 2
[[4,7]] => [2] => 2
[[5,7]] => [2] => 2
[[6,7]] => [2] => 2
[[7,7]] => [2] => 2
[[1],[7]] => [1,1] => 3
[[2],[7]] => [1,1] => 3
[[3],[7]] => [1,1] => 3
[[4],[7]] => [1,1] => 3
[[5],[7]] => [1,1] => 3
[[6],[7]] => [1,1] => 3
[[1,1,6]] => [3] => 3
[[1,2,6]] => [3] => 3
[[1,3,6]] => [3] => 3
[[1,4,6]] => [3] => 3
[[1,5,6]] => [3] => 3
[[1,6,6]] => [3] => 3
[[2,2,6]] => [3] => 3
[[2,3,6]] => [3] => 3
[[2,4,6]] => [3] => 3
[[2,5,6]] => [3] => 3
[[2,6,6]] => [3] => 3
[[3,3,6]] => [3] => 3
[[3,4,6]] => [3] => 3
[[3,5,6]] => [3] => 3
[[3,6,6]] => [3] => 3
[[4,4,6]] => [3] => 3
[[4,5,6]] => [3] => 3
[[4,6,6]] => [3] => 3
[[5,5,6]] => [3] => 3
[[5,6,6]] => [3] => 3
[[6,6,6]] => [3] => 3
[[1,1],[6]] => [2,1] => 6
[[1,2],[6]] => [2,1] => 6
[[1,6],[2]] => [2,1] => 6
[[1,3],[6]] => [2,1] => 6
[[1,6],[3]] => [2,1] => 6
[[1,4],[6]] => [2,1] => 6
[[1,6],[4]] => [2,1] => 6
[[1,5],[6]] => [2,1] => 6
[[1,6],[5]] => [2,1] => 6
[[1,6],[6]] => [2,1] => 6
[[2,2],[6]] => [2,1] => 6
[[2,3],[6]] => [2,1] => 6
[[2,6],[3]] => [2,1] => 6
[[2,4],[6]] => [2,1] => 6
[[2,6],[4]] => [2,1] => 6
[[2,5],[6]] => [2,1] => 6
[[2,6],[5]] => [2,1] => 6
[[2,6],[6]] => [2,1] => 6
[[3,3],[6]] => [2,1] => 6
[[3,4],[6]] => [2,1] => 6
[[3,6],[4]] => [2,1] => 6
[[3,5],[6]] => [2,1] => 6
[[3,6],[5]] => [2,1] => 6
[[3,6],[6]] => [2,1] => 6
[[4,4],[6]] => [2,1] => 6
[[4,5],[6]] => [2,1] => 6
[[4,6],[5]] => [2,1] => 6
[[4,6],[6]] => [2,1] => 6
[[5,5],[6]] => [2,1] => 6
[[5,6],[6]] => [2,1] => 6
[[1],[2],[6]] => [1,1,1] => 10
[[1],[3],[6]] => [1,1,1] => 10
[[1],[4],[6]] => [1,1,1] => 10
[[1],[5],[6]] => [1,1,1] => 10
[[2],[3],[6]] => [1,1,1] => 10
[[2],[4],[6]] => [1,1,1] => 10
[[2],[5],[6]] => [1,1,1] => 10
[[3],[4],[6]] => [1,1,1] => 10
[[3],[5],[6]] => [1,1,1] => 10
[[4],[5],[6]] => [1,1,1] => 10
[[1,1,1,5]] => [4] => 5
[[1,1,2,5]] => [4] => 5
[[1,1,3,5]] => [4] => 5
[[1,1,4,5]] => [4] => 5
[[1,1,5,5]] => [4] => 5
[[1,2,2,5]] => [4] => 5
[[1,2,3,5]] => [4] => 5
[[1,2,4,5]] => [4] => 5
[[1,2,5,5]] => [4] => 5
[[1,3,3,5]] => [4] => 5
[[1,3,4,5]] => [4] => 5
[[1,3,5,5]] => [4] => 5
[[1,4,4,5]] => [4] => 5
[[1,4,5,5]] => [4] => 5
[[1,5,5,5]] => [4] => 5
[[2,2,2,5]] => [4] => 5
[[2,2,3,5]] => [4] => 5
[[2,2,4,5]] => [4] => 5
[[2,2,5,5]] => [4] => 5
[[2,3,3,5]] => [4] => 5
[[2,3,4,5]] => [4] => 5
[[2,3,5,5]] => [4] => 5
[[2,4,4,5]] => [4] => 5
[[2,4,5,5]] => [4] => 5
[[2,5,5,5]] => [4] => 5
[[3,3,3,5]] => [4] => 5
[[3,3,4,5]] => [4] => 5
[[3,3,5,5]] => [4] => 5
[[3,4,4,5]] => [4] => 5
[[3,4,5,5]] => [4] => 5
[[3,5,5,5]] => [4] => 5
[[4,4,4,5]] => [4] => 5
[[4,4,5,5]] => [4] => 5
[[4,5,5,5]] => [4] => 5
[[5,5,5,5]] => [4] => 5
[[1,1,1],[5]] => [3,1] => 12
[[1,1,2],[5]] => [3,1] => 12
[[1,1,5],[2]] => [3,1] => 12
[[1,1,3],[5]] => [3,1] => 12
[[1,1,5],[3]] => [3,1] => 12
[[1,1,4],[5]] => [3,1] => 12
[[1,1,5],[4]] => [3,1] => 12
[[1,1,5],[5]] => [3,1] => 12
[[1,2,2],[5]] => [3,1] => 12
[[1,2,5],[2]] => [3,1] => 12
[[1,2,3],[5]] => [3,1] => 12
[[1,2,5],[3]] => [3,1] => 12
[[1,3,5],[2]] => [3,1] => 12
[[1,2,4],[5]] => [3,1] => 12
[[1,2,5],[4]] => [3,1] => 12
[[1,4,5],[2]] => [3,1] => 12
[[1,2,5],[5]] => [3,1] => 12
[[1,5,5],[2]] => [3,1] => 12
[[1,3,3],[5]] => [3,1] => 12
[[1,3,5],[3]] => [3,1] => 12
[[1,3,4],[5]] => [3,1] => 12
[[1,3,5],[4]] => [3,1] => 12
[[1,4,5],[3]] => [3,1] => 12
[[1,3,5],[5]] => [3,1] => 12
[[1,5,5],[3]] => [3,1] => 12
[[1,4,4],[5]] => [3,1] => 12
[[1,4,5],[4]] => [3,1] => 12
[[1,4,5],[5]] => [3,1] => 12
[[1,5,5],[4]] => [3,1] => 12
[[1,5,5],[5]] => [3,1] => 12
[[2,2,2],[5]] => [3,1] => 12
[[2,2,3],[5]] => [3,1] => 12
[[2,2,5],[3]] => [3,1] => 12
[[2,2,4],[5]] => [3,1] => 12
[[2,2,5],[4]] => [3,1] => 12
[[2,2,5],[5]] => [3,1] => 12
[[2,3,3],[5]] => [3,1] => 12
[[2,3,5],[3]] => [3,1] => 12
[[2,3,4],[5]] => [3,1] => 12
[[2,3,5],[4]] => [3,1] => 12
[[2,4,5],[3]] => [3,1] => 12
[[2,3,5],[5]] => [3,1] => 12
[[2,5,5],[3]] => [3,1] => 12
[[2,4,4],[5]] => [3,1] => 12
[[2,4,5],[4]] => [3,1] => 12
[[2,4,5],[5]] => [3,1] => 12
[[2,5,5],[4]] => [3,1] => 12
[[2,5,5],[5]] => [3,1] => 12
[[3,3,3],[5]] => [3,1] => 12
[[3,3,4],[5]] => [3,1] => 12
[[3,3,5],[4]] => [3,1] => 12
[[3,3,5],[5]] => [3,1] => 12
[[3,4,4],[5]] => [3,1] => 12
[[3,4,5],[4]] => [3,1] => 12
[[3,4,5],[5]] => [3,1] => 12
[[3,5,5],[4]] => [3,1] => 12
[[3,5,5],[5]] => [3,1] => 12
[[4,4,4],[5]] => [3,1] => 12
[[4,4,5],[5]] => [3,1] => 12
[[4,5,5],[5]] => [3,1] => 12
[[1,1],[2,5]] => [2,2] => 16
[[1,1],[3,5]] => [2,2] => 16
[[1,1],[4,5]] => [2,2] => 16
[[1,1],[5,5]] => [2,2] => 16
[[1,2],[2,5]] => [2,2] => 16
[[1,2],[3,5]] => [2,2] => 16
[[1,3],[2,5]] => [2,2] => 16
[[1,2],[4,5]] => [2,2] => 16
[[1,4],[2,5]] => [2,2] => 16
[[1,2],[5,5]] => [2,2] => 16
[[1,3],[3,5]] => [2,2] => 16
[[1,3],[4,5]] => [2,2] => 16
[[1,4],[3,5]] => [2,2] => 16
[[1,3],[5,5]] => [2,2] => 16
[[1,4],[4,5]] => [2,2] => 16
[[1,4],[5,5]] => [2,2] => 16
[[2,2],[3,5]] => [2,2] => 16
[[2,2],[4,5]] => [2,2] => 16
[[2,2],[5,5]] => [2,2] => 16
[[2,3],[3,5]] => [2,2] => 16
[[2,3],[4,5]] => [2,2] => 16
[[2,4],[3,5]] => [2,2] => 16
[[2,3],[5,5]] => [2,2] => 16
[[2,4],[4,5]] => [2,2] => 16
[[2,4],[5,5]] => [2,2] => 16
[[3,3],[4,5]] => [2,2] => 16
[[3,3],[5,5]] => [2,2] => 16
[[3,4],[4,5]] => [2,2] => 16
[[3,4],[5,5]] => [2,2] => 16
[[4,4],[5,5]] => [2,2] => 16
[[1,1],[2],[5]] => [2,1,1] => 27
[[1,1],[3],[5]] => [2,1,1] => 27
[[1,1],[4],[5]] => [2,1,1] => 27
[[1,2],[2],[5]] => [2,1,1] => 27
[[1,2],[3],[5]] => [2,1,1] => 27
[[1,3],[2],[5]] => [2,1,1] => 27
[[1,5],[2],[3]] => [2,1,1] => 27
[[1,2],[4],[5]] => [2,1,1] => 27
[[1,4],[2],[5]] => [2,1,1] => 27
[[1,5],[2],[4]] => [2,1,1] => 27
[[1,5],[2],[5]] => [2,1,1] => 27
[[1,3],[3],[5]] => [2,1,1] => 27
[[1,3],[4],[5]] => [2,1,1] => 27
[[1,4],[3],[5]] => [2,1,1] => 27
[[1,5],[3],[4]] => [2,1,1] => 27
[[1,5],[3],[5]] => [2,1,1] => 27
[[1,4],[4],[5]] => [2,1,1] => 27
[[1,5],[4],[5]] => [2,1,1] => 27
[[2,2],[3],[5]] => [2,1,1] => 27
[[2,2],[4],[5]] => [2,1,1] => 27
[[2,3],[3],[5]] => [2,1,1] => 27
[[2,3],[4],[5]] => [2,1,1] => 27
[[2,4],[3],[5]] => [2,1,1] => 27
[[2,5],[3],[4]] => [2,1,1] => 27
[[2,5],[3],[5]] => [2,1,1] => 27
[[2,4],[4],[5]] => [2,1,1] => 27
[[2,5],[4],[5]] => [2,1,1] => 27
[[3,3],[4],[5]] => [2,1,1] => 27
[[3,4],[4],[5]] => [2,1,1] => 27
[[3,5],[4],[5]] => [2,1,1] => 27
[[1],[2],[3],[5]] => [1,1,1,1] => 47
[[1],[2],[4],[5]] => [1,1,1,1] => 47
[[1],[3],[4],[5]] => [1,1,1,1] => 47
[[2],[3],[4],[5]] => [1,1,1,1] => 47
[[1,1,1,1,4]] => [5] => 7
[[1,1,1,2,4]] => [5] => 7
[[1,1,1,3,4]] => [5] => 7
[[1,1,1,4,4]] => [5] => 7
[[1,1,2,2,4]] => [5] => 7
[[1,1,2,3,4]] => [5] => 7
[[1,1,2,4,4]] => [5] => 7
[[1,1,3,3,4]] => [5] => 7
[[1,1,3,4,4]] => [5] => 7
[[1,1,4,4,4]] => [5] => 7
[[1,2,2,2,4]] => [5] => 7
[[1,2,2,3,4]] => [5] => 7
[[1,2,2,4,4]] => [5] => 7
[[1,2,3,3,4]] => [5] => 7
[[1,2,3,4,4]] => [5] => 7
[[1,2,4,4,4]] => [5] => 7
[[1,3,3,3,4]] => [5] => 7
[[1,3,3,4,4]] => [5] => 7
[[1,3,4,4,4]] => [5] => 7
[[1,4,4,4,4]] => [5] => 7
[[2,2,2,2,4]] => [5] => 7
[[2,2,2,3,4]] => [5] => 7
[[2,2,2,4,4]] => [5] => 7
[[2,2,3,3,4]] => [5] => 7
[[2,2,3,4,4]] => [5] => 7
[[2,2,4,4,4]] => [5] => 7
[[2,3,3,3,4]] => [5] => 7
[[2,3,3,4,4]] => [5] => 7
[[2,3,4,4,4]] => [5] => 7
[[2,4,4,4,4]] => [5] => 7
[[3,3,3,3,4]] => [5] => 7
[[3,3,3,4,4]] => [5] => 7
[[3,3,4,4,4]] => [5] => 7
[[3,4,4,4,4]] => [5] => 7
[[4,4,4,4,4]] => [5] => 7
[[1,1,1,1],[4]] => [4,1] => 20
[[1,1,1,2],[4]] => [4,1] => 20
[[1,1,1,4],[2]] => [4,1] => 20
[[1,1,1,3],[4]] => [4,1] => 20
[[1,1,1,4],[3]] => [4,1] => 20
[[1,1,1,4],[4]] => [4,1] => 20
[[1,1,2,2],[4]] => [4,1] => 20
[[1,1,2,4],[2]] => [4,1] => 20
[[1,1,2,3],[4]] => [4,1] => 20
[[1,1,2,4],[3]] => [4,1] => 20
[[1,1,3,4],[2]] => [4,1] => 20
[[1,1,2,4],[4]] => [4,1] => 20
[[1,1,4,4],[2]] => [4,1] => 20
[[1,1,3,3],[4]] => [4,1] => 20
[[1,1,3,4],[3]] => [4,1] => 20
[[1,1,3,4],[4]] => [4,1] => 20
[[1,1,4,4],[3]] => [4,1] => 20
[[1,1,4,4],[4]] => [4,1] => 20
[[1,2,2,2],[4]] => [4,1] => 20
[[1,2,2,4],[2]] => [4,1] => 20
[[1,2,2,3],[4]] => [4,1] => 20
[[1,2,2,4],[3]] => [4,1] => 20
[[1,2,3,4],[2]] => [4,1] => 20
[[1,2,2,4],[4]] => [4,1] => 20
[[1,2,4,4],[2]] => [4,1] => 20
[[1,2,3,3],[4]] => [4,1] => 20
[[1,2,3,4],[3]] => [4,1] => 20
[[1,3,3,4],[2]] => [4,1] => 20
[[1,2,3,4],[4]] => [4,1] => 20
[[1,2,4,4],[3]] => [4,1] => 20
[[1,3,4,4],[2]] => [4,1] => 20
[[1,2,4,4],[4]] => [4,1] => 20
[[1,4,4,4],[2]] => [4,1] => 20
[[1,3,3,3],[4]] => [4,1] => 20
[[1,3,3,4],[3]] => [4,1] => 20
[[1,3,3,4],[4]] => [4,1] => 20
[[1,3,4,4],[3]] => [4,1] => 20
[[1,3,4,4],[4]] => [4,1] => 20
[[1,4,4,4],[3]] => [4,1] => 20
[[1,4,4,4],[4]] => [4,1] => 20
[[2,2,2,2],[4]] => [4,1] => 20
[[2,2,2,3],[4]] => [4,1] => 20
[[2,2,2,4],[3]] => [4,1] => 20
[[2,2,2,4],[4]] => [4,1] => 20
[[2,2,3,3],[4]] => [4,1] => 20
[[2,2,3,4],[3]] => [4,1] => 20
[[2,2,3,4],[4]] => [4,1] => 20
[[2,2,4,4],[3]] => [4,1] => 20
[[2,2,4,4],[4]] => [4,1] => 20
[[2,3,3,3],[4]] => [4,1] => 20
[[2,3,3,4],[3]] => [4,1] => 20
[[2,3,3,4],[4]] => [4,1] => 20
[[2,3,4,4],[3]] => [4,1] => 20
[[2,3,4,4],[4]] => [4,1] => 20
[[2,4,4,4],[3]] => [4,1] => 20
[[2,4,4,4],[4]] => [4,1] => 20
[[3,3,3,3],[4]] => [4,1] => 20
[[3,3,3,4],[4]] => [4,1] => 20
[[3,3,4,4],[4]] => [4,1] => 20
[[3,4,4,4],[4]] => [4,1] => 20
[[1,1,1],[2,4]] => [3,2] => 32
[[1,1,1],[3,4]] => [3,2] => 32
[[1,1,1],[4,4]] => [3,2] => 32
[[1,1,2],[2,4]] => [3,2] => 32
[[1,1,4],[2,2]] => [3,2] => 32
[[1,1,2],[3,4]] => [3,2] => 32
[[1,1,3],[2,4]] => [3,2] => 32
[[1,1,4],[2,3]] => [3,2] => 32
[[1,1,2],[4,4]] => [3,2] => 32
[[1,1,4],[2,4]] => [3,2] => 32
[[1,1,3],[3,4]] => [3,2] => 32
[[1,1,4],[3,3]] => [3,2] => 32
[[1,1,3],[4,4]] => [3,2] => 32
[[1,1,4],[3,4]] => [3,2] => 32
[[1,1,4],[4,4]] => [3,2] => 32
[[1,2,2],[2,4]] => [3,2] => 32
[[1,2,2],[3,4]] => [3,2] => 32
[[1,2,3],[2,4]] => [3,2] => 32
[[1,2,4],[2,3]] => [3,2] => 32
[[1,2,2],[4,4]] => [3,2] => 32
[[1,2,4],[2,4]] => [3,2] => 32
[[1,2,3],[3,4]] => [3,2] => 32
[[1,2,4],[3,3]] => [3,2] => 32
[[1,3,3],[2,4]] => [3,2] => 32
[[1,2,3],[4,4]] => [3,2] => 32
[[1,2,4],[3,4]] => [3,2] => 32
[[1,3,4],[2,4]] => [3,2] => 32
[[1,2,4],[4,4]] => [3,2] => 32
[[1,3,3],[3,4]] => [3,2] => 32
[[1,3,3],[4,4]] => [3,2] => 32
[[1,3,4],[3,4]] => [3,2] => 32
[[1,3,4],[4,4]] => [3,2] => 32
[[2,2,2],[3,4]] => [3,2] => 32
[[2,2,2],[4,4]] => [3,2] => 32
[[2,2,3],[3,4]] => [3,2] => 32
[[2,2,4],[3,3]] => [3,2] => 32
[[2,2,3],[4,4]] => [3,2] => 32
[[2,2,4],[3,4]] => [3,2] => 32
[[2,2,4],[4,4]] => [3,2] => 32
[[2,3,3],[3,4]] => [3,2] => 32
[[2,3,3],[4,4]] => [3,2] => 32
[[2,3,4],[3,4]] => [3,2] => 32
[[2,3,4],[4,4]] => [3,2] => 32
[[3,3,3],[4,4]] => [3,2] => 32
[[3,3,4],[4,4]] => [3,2] => 32
[[1,1,1],[2],[4]] => [3,1,1] => 56
[[1,1,1],[3],[4]] => [3,1,1] => 56
[[1,1,2],[2],[4]] => [3,1,1] => 56
[[1,1,2],[3],[4]] => [3,1,1] => 56
[[1,1,3],[2],[4]] => [3,1,1] => 56
[[1,1,4],[2],[3]] => [3,1,1] => 56
[[1,1,4],[2],[4]] => [3,1,1] => 56
[[1,1,3],[3],[4]] => [3,1,1] => 56
[[1,1,4],[3],[4]] => [3,1,1] => 56
[[1,2,2],[2],[4]] => [3,1,1] => 56
[[1,2,2],[3],[4]] => [3,1,1] => 56
[[1,2,3],[2],[4]] => [3,1,1] => 56
[[1,2,4],[2],[3]] => [3,1,1] => 56
[[1,2,4],[2],[4]] => [3,1,1] => 56
[[1,2,3],[3],[4]] => [3,1,1] => 56
[[1,3,3],[2],[4]] => [3,1,1] => 56
[[1,3,4],[2],[3]] => [3,1,1] => 56
[[1,2,4],[3],[4]] => [3,1,1] => 56
[[1,3,4],[2],[4]] => [3,1,1] => 56
[[1,4,4],[2],[3]] => [3,1,1] => 56
[[1,4,4],[2],[4]] => [3,1,1] => 56
[[1,3,3],[3],[4]] => [3,1,1] => 56
[[1,3,4],[3],[4]] => [3,1,1] => 56
[[1,4,4],[3],[4]] => [3,1,1] => 56
[[2,2,2],[3],[4]] => [3,1,1] => 56
[[2,2,3],[3],[4]] => [3,1,1] => 56
[[2,2,4],[3],[4]] => [3,1,1] => 56
[[2,3,3],[3],[4]] => [3,1,1] => 56
[[2,3,4],[3],[4]] => [3,1,1] => 56
[[2,4,4],[3],[4]] => [3,1,1] => 56
[[1,1],[2,2],[4]] => [2,2,1] => 76
[[1,1],[2,3],[4]] => [2,2,1] => 76
[[1,1],[2,4],[3]] => [2,2,1] => 76
[[1,1],[2,4],[4]] => [2,2,1] => 76
[[1,1],[3,3],[4]] => [2,2,1] => 76
[[1,1],[3,4],[4]] => [2,2,1] => 76
[[1,2],[2,3],[4]] => [2,2,1] => 76
[[1,2],[2,4],[3]] => [2,2,1] => 76
[[1,2],[2,4],[4]] => [2,2,1] => 76
[[1,2],[3,3],[4]] => [2,2,1] => 76
[[1,3],[2,4],[3]] => [2,2,1] => 76
[[1,2],[3,4],[4]] => [2,2,1] => 76
[[1,3],[2,4],[4]] => [2,2,1] => 76
[[1,3],[3,4],[4]] => [2,2,1] => 76
[[2,2],[3,3],[4]] => [2,2,1] => 76
[[2,2],[3,4],[4]] => [2,2,1] => 76
[[2,3],[3,4],[4]] => [2,2,1] => 76
[[1,1],[2],[3],[4]] => [2,1,1,1] => 136
[[1,2],[2],[3],[4]] => [2,1,1,1] => 136
[[1,3],[2],[3],[4]] => [2,1,1,1] => 136
[[1,4],[2],[3],[4]] => [2,1,1,1] => 136
[[1,1,1,1,1,3]] => [6] => 11
[[1,1,1,1,2,3]] => [6] => 11
[[1,1,1,1,3,3]] => [6] => 11
[[1,1,1,2,2,3]] => [6] => 11
[[1,1,1,2,3,3]] => [6] => 11
[[1,1,1,3,3,3]] => [6] => 11
[[1,1,2,2,2,3]] => [6] => 11
[[1,1,2,2,3,3]] => [6] => 11
[[1,1,2,3,3,3]] => [6] => 11
[[1,1,3,3,3,3]] => [6] => 11
[[1,2,2,2,2,3]] => [6] => 11
[[1,2,2,2,3,3]] => [6] => 11
[[1,2,2,3,3,3]] => [6] => 11
[[1,2,3,3,3,3]] => [6] => 11
[[1,3,3,3,3,3]] => [6] => 11
[[2,2,2,2,2,3]] => [6] => 11
[[2,2,2,2,3,3]] => [6] => 11
[[2,2,2,3,3,3]] => [6] => 11
[[2,2,3,3,3,3]] => [6] => 11
[[2,3,3,3,3,3]] => [6] => 11
[[3,3,3,3,3,3]] => [6] => 11
[[1,1,1,1,1],[3]] => [5,1] => 35
[[1,1,1,1,2],[3]] => [5,1] => 35
[[1,1,1,1,3],[2]] => [5,1] => 35
[[1,1,1,1,3],[3]] => [5,1] => 35
[[1,1,1,2,2],[3]] => [5,1] => 35
[[1,1,1,2,3],[2]] => [5,1] => 35
[[1,1,1,2,3],[3]] => [5,1] => 35
[[1,1,1,3,3],[2]] => [5,1] => 35
[[1,1,1,3,3],[3]] => [5,1] => 35
[[1,1,2,2,2],[3]] => [5,1] => 35
[[1,1,2,2,3],[2]] => [5,1] => 35
[[1,1,2,2,3],[3]] => [5,1] => 35
[[1,1,2,3,3],[2]] => [5,1] => 35
[[1,1,2,3,3],[3]] => [5,1] => 35
[[1,1,3,3,3],[2]] => [5,1] => 35
[[1,1,3,3,3],[3]] => [5,1] => 35
[[1,2,2,2,2],[3]] => [5,1] => 35
[[1,2,2,2,3],[2]] => [5,1] => 35
[[1,2,2,2,3],[3]] => [5,1] => 35
[[1,2,2,3,3],[2]] => [5,1] => 35
[[1,2,2,3,3],[3]] => [5,1] => 35
[[1,2,3,3,3],[2]] => [5,1] => 35
[[1,2,3,3,3],[3]] => [5,1] => 35
[[1,3,3,3,3],[2]] => [5,1] => 35
[[1,3,3,3,3],[3]] => [5,1] => 35
[[2,2,2,2,2],[3]] => [5,1] => 35
[[2,2,2,2,3],[3]] => [5,1] => 35
[[2,2,2,3,3],[3]] => [5,1] => 35
[[2,2,3,3,3],[3]] => [5,1] => 35
[[2,3,3,3,3],[3]] => [5,1] => 35
[[1,1,1,1],[2,3]] => [4,2] => 65
[[1,1,1,1],[3,3]] => [4,2] => 65
[[1,1,1,2],[2,3]] => [4,2] => 65
[[1,1,1,3],[2,2]] => [4,2] => 65
[[1,1,1,2],[3,3]] => [4,2] => 65
[[1,1,1,3],[2,3]] => [4,2] => 65
[[1,1,1,3],[3,3]] => [4,2] => 65
[[1,1,2,2],[2,3]] => [4,2] => 65
[[1,1,2,3],[2,2]] => [4,2] => 65
[[1,1,2,2],[3,3]] => [4,2] => 65
[[1,1,2,3],[2,3]] => [4,2] => 65
[[1,1,3,3],[2,2]] => [4,2] => 65
[[1,1,2,3],[3,3]] => [4,2] => 65
[[1,1,3,3],[2,3]] => [4,2] => 65
[[1,1,3,3],[3,3]] => [4,2] => 65
[[1,2,2,2],[2,3]] => [4,2] => 65
[[1,2,2,2],[3,3]] => [4,2] => 65
[[1,2,2,3],[2,3]] => [4,2] => 65
[[1,2,2,3],[3,3]] => [4,2] => 65
[[1,2,3,3],[2,3]] => [4,2] => 65
[[1,2,3,3],[3,3]] => [4,2] => 65
[[2,2,2,2],[3,3]] => [4,2] => 65
[[2,2,2,3],[3,3]] => [4,2] => 65
[[2,2,3,3],[3,3]] => [4,2] => 65
[[1,1,1,1],[2],[3]] => [4,1,1] => 114
[[1,1,1,2],[2],[3]] => [4,1,1] => 114
[[1,1,1,3],[2],[3]] => [4,1,1] => 114
[[1,1,2,2],[2],[3]] => [4,1,1] => 114
[[1,1,2,3],[2],[3]] => [4,1,1] => 114
[[1,1,3,3],[2],[3]] => [4,1,1] => 114
[[1,2,2,2],[2],[3]] => [4,1,1] => 114
[[1,2,2,3],[2],[3]] => [4,1,1] => 114
[[1,2,3,3],[2],[3]] => [4,1,1] => 114
[[1,3,3,3],[2],[3]] => [4,1,1] => 114
[[1,1,1],[2,2,3]] => [3,3] => 79
[[1,1,1],[2,3,3]] => [3,3] => 79
[[1,1,1],[3,3,3]] => [3,3] => 79
[[1,1,2],[2,2,3]] => [3,3] => 79
[[1,1,2],[2,3,3]] => [3,3] => 79
[[1,1,2],[3,3,3]] => [3,3] => 79
[[1,2,2],[2,3,3]] => [3,3] => 79
[[1,2,2],[3,3,3]] => [3,3] => 79
[[2,2,2],[3,3,3]] => [3,3] => 79
[[1,1,1],[2,2],[3]] => [3,2,1] => 191
[[1,1,1],[2,3],[3]] => [3,2,1] => 191
[[1,1,2],[2,2],[3]] => [3,2,1] => 191
[[1,1,2],[2,3],[3]] => [3,2,1] => 191
[[1,1,3],[2,2],[3]] => [3,2,1] => 191
[[1,1,3],[2,3],[3]] => [3,2,1] => 191
[[1,2,2],[2,3],[3]] => [3,2,1] => 191
[[1,2,3],[2,3],[3]] => [3,2,1] => 191
[[1,1],[2,2],[3,3]] => [2,2,2] => 263
[[1,1,1,1,1,1,2]] => [7] => 15
[[1,1,1,1,1,2,2]] => [7] => 15
[[1,1,1,1,2,2,2]] => [7] => 15
[[1,1,1,2,2,2,2]] => [7] => 15
[[1,1,2,2,2,2,2]] => [7] => 15
[[1,2,2,2,2,2,2]] => [7] => 15
[[2,2,2,2,2,2,2]] => [7] => 15
[[1,1,1,1,1,1],[2]] => [6,1] => 54
[[1,1,1,1,1,2],[2]] => [6,1] => 54
[[1,1,1,1,2,2],[2]] => [6,1] => 54
[[1,1,1,2,2,2],[2]] => [6,1] => 54
[[1,1,2,2,2,2],[2]] => [6,1] => 54
[[1,2,2,2,2,2],[2]] => [6,1] => 54
[[1,1,1,1,1],[2,2]] => [5,2] => 113
[[1,1,1,1,2],[2,2]] => [5,2] => 113
[[1,1,1,2,2],[2,2]] => [5,2] => 113
[[1,1,2,2,2],[2,2]] => [5,2] => 113
[[1,1,1,1],[2,2,2]] => [4,3] => 160
[[1,1,1,2],[2,2,2]] => [4,3] => 160
[[1,8]] => [2] => 2
[[2,8]] => [2] => 2
[[3,8]] => [2] => 2
[[4,8]] => [2] => 2
[[5,8]] => [2] => 2
[[6,8]] => [2] => 2
[[7,8]] => [2] => 2
[[8,8]] => [2] => 2
[[1],[8]] => [1,1] => 3
[[2],[8]] => [1,1] => 3
[[3],[8]] => [1,1] => 3
[[4],[8]] => [1,1] => 3
[[5],[8]] => [1,1] => 3
[[6],[8]] => [1,1] => 3
[[7],[8]] => [1,1] => 3
[[1,1,7]] => [3] => 3
[[1,2,7]] => [3] => 3
[[1,3,7]] => [3] => 3
[[1,4,7]] => [3] => 3
[[1,5,7]] => [3] => 3
[[1,6,7]] => [3] => 3
[[1,7,7]] => [3] => 3
[[2,2,7]] => [3] => 3
[[2,3,7]] => [3] => 3
[[2,4,7]] => [3] => 3
[[2,5,7]] => [3] => 3
[[2,6,7]] => [3] => 3
[[2,7,7]] => [3] => 3
[[3,3,7]] => [3] => 3
[[3,4,7]] => [3] => 3
[[3,5,7]] => [3] => 3
[[3,6,7]] => [3] => 3
[[3,7,7]] => [3] => 3
[[4,4,7]] => [3] => 3
[[4,5,7]] => [3] => 3
[[4,6,7]] => [3] => 3
[[4,7,7]] => [3] => 3
[[5,5,7]] => [3] => 3
[[5,6,7]] => [3] => 3
[[5,7,7]] => [3] => 3
[[6,6,7]] => [3] => 3
[[6,7,7]] => [3] => 3
[[7,7,7]] => [3] => 3
[[1,1],[7]] => [2,1] => 6
[[1,2],[7]] => [2,1] => 6
[[1,7],[2]] => [2,1] => 6
[[1,3],[7]] => [2,1] => 6
[[1,7],[3]] => [2,1] => 6
[[1,4],[7]] => [2,1] => 6
[[1,7],[4]] => [2,1] => 6
[[1,5],[7]] => [2,1] => 6
[[1,7],[5]] => [2,1] => 6
[[1,6],[7]] => [2,1] => 6
[[1,7],[6]] => [2,1] => 6
[[1,7],[7]] => [2,1] => 6
[[2,2],[7]] => [2,1] => 6
[[2,3],[7]] => [2,1] => 6
[[2,7],[3]] => [2,1] => 6
[[2,4],[7]] => [2,1] => 6
[[2,7],[4]] => [2,1] => 6
[[2,5],[7]] => [2,1] => 6
[[2,7],[5]] => [2,1] => 6
[[2,6],[7]] => [2,1] => 6
[[2,7],[6]] => [2,1] => 6
[[2,7],[7]] => [2,1] => 6
[[3,3],[7]] => [2,1] => 6
[[3,4],[7]] => [2,1] => 6
[[3,7],[4]] => [2,1] => 6
[[3,5],[7]] => [2,1] => 6
[[3,7],[5]] => [2,1] => 6
[[3,6],[7]] => [2,1] => 6
[[3,7],[6]] => [2,1] => 6
[[3,7],[7]] => [2,1] => 6
[[4,4],[7]] => [2,1] => 6
[[4,5],[7]] => [2,1] => 6
[[4,7],[5]] => [2,1] => 6
[[4,6],[7]] => [2,1] => 6
[[4,7],[6]] => [2,1] => 6
[[4,7],[7]] => [2,1] => 6
[[5,5],[7]] => [2,1] => 6
[[5,6],[7]] => [2,1] => 6
[[5,7],[6]] => [2,1] => 6
[[5,7],[7]] => [2,1] => 6
[[6,6],[7]] => [2,1] => 6
[[6,7],[7]] => [2,1] => 6
[[1],[2],[7]] => [1,1,1] => 10
[[1],[3],[7]] => [1,1,1] => 10
[[1],[4],[7]] => [1,1,1] => 10
[[1],[5],[7]] => [1,1,1] => 10
[[1],[6],[7]] => [1,1,1] => 10
[[2],[3],[7]] => [1,1,1] => 10
[[2],[4],[7]] => [1,1,1] => 10
[[2],[5],[7]] => [1,1,1] => 10
[[2],[6],[7]] => [1,1,1] => 10
[[3],[4],[7]] => [1,1,1] => 10
[[3],[5],[7]] => [1,1,1] => 10
[[3],[6],[7]] => [1,1,1] => 10
[[4],[5],[7]] => [1,1,1] => 10
[[4],[6],[7]] => [1,1,1] => 10
[[5],[6],[7]] => [1,1,1] => 10
[[1,1,1,6]] => [4] => 5
[[1,1,2,6]] => [4] => 5
[[1,1,3,6]] => [4] => 5
[[1,1,4,6]] => [4] => 5
[[1,1,5,6]] => [4] => 5
[[1,1,6,6]] => [4] => 5
[[1,2,2,6]] => [4] => 5
[[1,2,3,6]] => [4] => 5
[[1,2,4,6]] => [4] => 5
[[1,2,5,6]] => [4] => 5
[[1,2,6,6]] => [4] => 5
[[1,3,3,6]] => [4] => 5
[[1,3,4,6]] => [4] => 5
[[1,3,5,6]] => [4] => 5
[[1,3,6,6]] => [4] => 5
[[1,4,4,6]] => [4] => 5
[[1,4,5,6]] => [4] => 5
[[1,4,6,6]] => [4] => 5
[[1,5,5,6]] => [4] => 5
[[1,5,6,6]] => [4] => 5
[[1,6,6,6]] => [4] => 5
[[2,2,2,6]] => [4] => 5
[[2,2,3,6]] => [4] => 5
[[2,2,4,6]] => [4] => 5
[[2,2,5,6]] => [4] => 5
[[2,2,6,6]] => [4] => 5
[[2,3,3,6]] => [4] => 5
[[2,3,4,6]] => [4] => 5
[[2,3,5,6]] => [4] => 5
[[2,3,6,6]] => [4] => 5
[[2,4,4,6]] => [4] => 5
[[2,4,5,6]] => [4] => 5
[[2,4,6,6]] => [4] => 5
[[2,5,5,6]] => [4] => 5
[[2,5,6,6]] => [4] => 5
[[2,6,6,6]] => [4] => 5
[[3,3,3,6]] => [4] => 5
[[3,3,4,6]] => [4] => 5
[[3,3,5,6]] => [4] => 5
[[3,3,6,6]] => [4] => 5
[[3,4,4,6]] => [4] => 5
[[3,4,5,6]] => [4] => 5
[[3,4,6,6]] => [4] => 5
[[3,5,5,6]] => [4] => 5
[[3,5,6,6]] => [4] => 5
[[3,6,6,6]] => [4] => 5
[[4,4,4,6]] => [4] => 5
[[4,4,5,6]] => [4] => 5
[[4,4,6,6]] => [4] => 5
[[4,5,5,6]] => [4] => 5
[[4,5,6,6]] => [4] => 5
[[4,6,6,6]] => [4] => 5
[[5,5,5,6]] => [4] => 5
[[5,5,6,6]] => [4] => 5
[[5,6,6,6]] => [4] => 5
[[6,6,6,6]] => [4] => 5
[[1,1,1],[6]] => [3,1] => 12
[[1,1,2],[6]] => [3,1] => 12
[[1,1,6],[2]] => [3,1] => 12
[[1,1,3],[6]] => [3,1] => 12
[[1,1,6],[3]] => [3,1] => 12
[[1,1,4],[6]] => [3,1] => 12
[[1,1,6],[4]] => [3,1] => 12
[[1,1,5],[6]] => [3,1] => 12
[[1,1,6],[5]] => [3,1] => 12
[[1,1,6],[6]] => [3,1] => 12
[[1,2,2],[6]] => [3,1] => 12
[[1,2,6],[2]] => [3,1] => 12
[[1,2,3],[6]] => [3,1] => 12
[[1,2,6],[3]] => [3,1] => 12
[[1,3,6],[2]] => [3,1] => 12
[[1,2,4],[6]] => [3,1] => 12
[[1,2,6],[4]] => [3,1] => 12
[[1,4,6],[2]] => [3,1] => 12
[[1,2,5],[6]] => [3,1] => 12
[[1,2,6],[5]] => [3,1] => 12
[[1,5,6],[2]] => [3,1] => 12
[[1,2,6],[6]] => [3,1] => 12
[[1,6,6],[2]] => [3,1] => 12
[[1,3,3],[6]] => [3,1] => 12
[[1,3,6],[3]] => [3,1] => 12
[[1,3,4],[6]] => [3,1] => 12
[[1,3,6],[4]] => [3,1] => 12
[[1,4,6],[3]] => [3,1] => 12
[[1,3,5],[6]] => [3,1] => 12
[[1,3,6],[5]] => [3,1] => 12
[[1,5,6],[3]] => [3,1] => 12
[[1,3,6],[6]] => [3,1] => 12
[[1,6,6],[3]] => [3,1] => 12
[[1,4,4],[6]] => [3,1] => 12
[[1,4,6],[4]] => [3,1] => 12
[[1,4,5],[6]] => [3,1] => 12
[[1,4,6],[5]] => [3,1] => 12
[[1,5,6],[4]] => [3,1] => 12
[[1,4,6],[6]] => [3,1] => 12
[[1,6,6],[4]] => [3,1] => 12
[[1,5,5],[6]] => [3,1] => 12
[[1,5,6],[5]] => [3,1] => 12
[[1,5,6],[6]] => [3,1] => 12
[[1,6,6],[5]] => [3,1] => 12
[[1,6,6],[6]] => [3,1] => 12
[[2,2,2],[6]] => [3,1] => 12
[[2,2,3],[6]] => [3,1] => 12
[[2,2,6],[3]] => [3,1] => 12
[[2,2,4],[6]] => [3,1] => 12
[[2,2,6],[4]] => [3,1] => 12
[[2,2,5],[6]] => [3,1] => 12
[[2,2,6],[5]] => [3,1] => 12
[[2,2,6],[6]] => [3,1] => 12
[[2,3,3],[6]] => [3,1] => 12
[[2,3,6],[3]] => [3,1] => 12
[[2,3,4],[6]] => [3,1] => 12
[[2,3,6],[4]] => [3,1] => 12
[[2,4,6],[3]] => [3,1] => 12
[[2,3,5],[6]] => [3,1] => 12
[[2,3,6],[5]] => [3,1] => 12
[[2,5,6],[3]] => [3,1] => 12
[[2,3,6],[6]] => [3,1] => 12
[[2,6,6],[3]] => [3,1] => 12
[[2,4,4],[6]] => [3,1] => 12
[[2,4,6],[4]] => [3,1] => 12
[[2,4,5],[6]] => [3,1] => 12
[[2,4,6],[5]] => [3,1] => 12
[[2,5,6],[4]] => [3,1] => 12
[[2,4,6],[6]] => [3,1] => 12
[[2,6,6],[4]] => [3,1] => 12
[[2,5,5],[6]] => [3,1] => 12
[[2,5,6],[5]] => [3,1] => 12
[[2,5,6],[6]] => [3,1] => 12
[[2,6,6],[5]] => [3,1] => 12
[[2,6,6],[6]] => [3,1] => 12
[[3,3,3],[6]] => [3,1] => 12
[[3,3,4],[6]] => [3,1] => 12
[[3,3,6],[4]] => [3,1] => 12
[[3,3,5],[6]] => [3,1] => 12
[[3,3,6],[5]] => [3,1] => 12
[[3,3,6],[6]] => [3,1] => 12
[[3,4,4],[6]] => [3,1] => 12
[[3,4,6],[4]] => [3,1] => 12
[[3,4,5],[6]] => [3,1] => 12
[[3,4,6],[5]] => [3,1] => 12
[[3,5,6],[4]] => [3,1] => 12
[[3,4,6],[6]] => [3,1] => 12
[[3,6,6],[4]] => [3,1] => 12
[[3,5,5],[6]] => [3,1] => 12
[[3,5,6],[5]] => [3,1] => 12
[[3,5,6],[6]] => [3,1] => 12
[[3,6,6],[5]] => [3,1] => 12
[[3,6,6],[6]] => [3,1] => 12
[[4,4,4],[6]] => [3,1] => 12
[[4,4,5],[6]] => [3,1] => 12
[[4,4,6],[5]] => [3,1] => 12
[[4,4,6],[6]] => [3,1] => 12
[[4,5,5],[6]] => [3,1] => 12
[[4,5,6],[5]] => [3,1] => 12
[[4,5,6],[6]] => [3,1] => 12
[[4,6,6],[5]] => [3,1] => 12
[[4,6,6],[6]] => [3,1] => 12
[[5,5,5],[6]] => [3,1] => 12
[[5,5,6],[6]] => [3,1] => 12
[[5,6,6],[6]] => [3,1] => 12
[[1,1],[2,6]] => [2,2] => 16
[[1,1],[3,6]] => [2,2] => 16
[[1,1],[4,6]] => [2,2] => 16
[[1,1],[5,6]] => [2,2] => 16
[[1,1],[6,6]] => [2,2] => 16
[[1,2],[2,6]] => [2,2] => 16
[[1,2],[3,6]] => [2,2] => 16
[[1,3],[2,6]] => [2,2] => 16
[[1,2],[4,6]] => [2,2] => 16
[[1,4],[2,6]] => [2,2] => 16
[[1,2],[5,6]] => [2,2] => 16
[[1,5],[2,6]] => [2,2] => 16
[[1,2],[6,6]] => [2,2] => 16
[[1,3],[3,6]] => [2,2] => 16
[[1,3],[4,6]] => [2,2] => 16
[[1,4],[3,6]] => [2,2] => 16
[[1,3],[5,6]] => [2,2] => 16
[[1,5],[3,6]] => [2,2] => 16
[[1,3],[6,6]] => [2,2] => 16
[[1,4],[4,6]] => [2,2] => 16
[[1,4],[5,6]] => [2,2] => 16
[[1,5],[4,6]] => [2,2] => 16
[[1,4],[6,6]] => [2,2] => 16
[[1,5],[5,6]] => [2,2] => 16
[[1,5],[6,6]] => [2,2] => 16
[[2,2],[3,6]] => [2,2] => 16
[[2,2],[4,6]] => [2,2] => 16
[[2,2],[5,6]] => [2,2] => 16
[[2,2],[6,6]] => [2,2] => 16
[[2,3],[3,6]] => [2,2] => 16
[[2,3],[4,6]] => [2,2] => 16
[[2,4],[3,6]] => [2,2] => 16
[[2,3],[5,6]] => [2,2] => 16
[[2,5],[3,6]] => [2,2] => 16
[[2,3],[6,6]] => [2,2] => 16
[[2,4],[4,6]] => [2,2] => 16
[[2,4],[5,6]] => [2,2] => 16
[[2,5],[4,6]] => [2,2] => 16
[[2,4],[6,6]] => [2,2] => 16
[[2,5],[5,6]] => [2,2] => 16
[[2,5],[6,6]] => [2,2] => 16
[[3,3],[4,6]] => [2,2] => 16
[[3,3],[5,6]] => [2,2] => 16
[[3,3],[6,6]] => [2,2] => 16
[[3,4],[4,6]] => [2,2] => 16
[[3,4],[5,6]] => [2,2] => 16
[[3,5],[4,6]] => [2,2] => 16
[[3,4],[6,6]] => [2,2] => 16
[[3,5],[5,6]] => [2,2] => 16
[[3,5],[6,6]] => [2,2] => 16
[[4,4],[5,6]] => [2,2] => 16
[[4,4],[6,6]] => [2,2] => 16
[[4,5],[5,6]] => [2,2] => 16
[[4,5],[6,6]] => [2,2] => 16
[[5,5],[6,6]] => [2,2] => 16
[[1,1],[2],[6]] => [2,1,1] => 27
[[1,1],[3],[6]] => [2,1,1] => 27
[[1,1],[4],[6]] => [2,1,1] => 27
[[1,1],[5],[6]] => [2,1,1] => 27
[[1,2],[2],[6]] => [2,1,1] => 27
[[1,2],[3],[6]] => [2,1,1] => 27
[[1,3],[2],[6]] => [2,1,1] => 27
[[1,6],[2],[3]] => [2,1,1] => 27
[[1,2],[4],[6]] => [2,1,1] => 27
[[1,4],[2],[6]] => [2,1,1] => 27
[[1,6],[2],[4]] => [2,1,1] => 27
[[1,2],[5],[6]] => [2,1,1] => 27
[[1,5],[2],[6]] => [2,1,1] => 27
[[1,6],[2],[5]] => [2,1,1] => 27
[[1,6],[2],[6]] => [2,1,1] => 27
[[1,3],[3],[6]] => [2,1,1] => 27
[[1,3],[4],[6]] => [2,1,1] => 27
[[1,4],[3],[6]] => [2,1,1] => 27
[[1,6],[3],[4]] => [2,1,1] => 27
[[1,3],[5],[6]] => [2,1,1] => 27
[[1,5],[3],[6]] => [2,1,1] => 27
[[1,6],[3],[5]] => [2,1,1] => 27
[[1,6],[3],[6]] => [2,1,1] => 27
[[1,4],[4],[6]] => [2,1,1] => 27
[[1,4],[5],[6]] => [2,1,1] => 27
[[1,5],[4],[6]] => [2,1,1] => 27
[[1,6],[4],[5]] => [2,1,1] => 27
[[1,6],[4],[6]] => [2,1,1] => 27
[[1,5],[5],[6]] => [2,1,1] => 27
[[1,6],[5],[6]] => [2,1,1] => 27
[[2,2],[3],[6]] => [2,1,1] => 27
[[2,2],[4],[6]] => [2,1,1] => 27
[[2,2],[5],[6]] => [2,1,1] => 27
[[2,3],[3],[6]] => [2,1,1] => 27
[[2,3],[4],[6]] => [2,1,1] => 27
[[2,4],[3],[6]] => [2,1,1] => 27
[[2,6],[3],[4]] => [2,1,1] => 27
[[2,3],[5],[6]] => [2,1,1] => 27
[[2,5],[3],[6]] => [2,1,1] => 27
[[2,6],[3],[5]] => [2,1,1] => 27
[[2,6],[3],[6]] => [2,1,1] => 27
[[2,4],[4],[6]] => [2,1,1] => 27
[[2,4],[5],[6]] => [2,1,1] => 27
[[2,5],[4],[6]] => [2,1,1] => 27
[[2,6],[4],[5]] => [2,1,1] => 27
[[2,6],[4],[6]] => [2,1,1] => 27
[[2,5],[5],[6]] => [2,1,1] => 27
[[2,6],[5],[6]] => [2,1,1] => 27
[[3,3],[4],[6]] => [2,1,1] => 27
[[3,3],[5],[6]] => [2,1,1] => 27
[[3,4],[4],[6]] => [2,1,1] => 27
[[3,4],[5],[6]] => [2,1,1] => 27
[[3,5],[4],[6]] => [2,1,1] => 27
[[3,6],[4],[5]] => [2,1,1] => 27
[[3,6],[4],[6]] => [2,1,1] => 27
[[3,5],[5],[6]] => [2,1,1] => 27
[[3,6],[5],[6]] => [2,1,1] => 27
[[4,4],[5],[6]] => [2,1,1] => 27
[[4,5],[5],[6]] => [2,1,1] => 27
[[4,6],[5],[6]] => [2,1,1] => 27
[[1],[2],[3],[6]] => [1,1,1,1] => 47
[[1],[2],[4],[6]] => [1,1,1,1] => 47
[[1],[2],[5],[6]] => [1,1,1,1] => 47
[[1],[3],[4],[6]] => [1,1,1,1] => 47
[[1],[3],[5],[6]] => [1,1,1,1] => 47
[[1],[4],[5],[6]] => [1,1,1,1] => 47
[[2],[3],[4],[6]] => [1,1,1,1] => 47
[[2],[3],[5],[6]] => [1,1,1,1] => 47
[[2],[4],[5],[6]] => [1,1,1,1] => 47
[[3],[4],[5],[6]] => [1,1,1,1] => 47
[[1,1,1,1,5]] => [5] => 7
[[1,1,1,2,5]] => [5] => 7
[[1,1,1,3,5]] => [5] => 7
[[1,1,1,4,5]] => [5] => 7
[[1,1,1,5,5]] => [5] => 7
[[1,1,2,2,5]] => [5] => 7
[[1,1,2,3,5]] => [5] => 7
[[1,1,2,4,5]] => [5] => 7
[[1,1,2,5,5]] => [5] => 7
[[1,1,3,3,5]] => [5] => 7
[[1,1,3,4,5]] => [5] => 7
[[1,1,3,5,5]] => [5] => 7
[[1,1,4,4,5]] => [5] => 7
[[1,1,4,5,5]] => [5] => 7
[[1,1,5,5,5]] => [5] => 7
[[1,2,2,2,5]] => [5] => 7
[[1,2,2,3,5]] => [5] => 7
[[1,2,2,4,5]] => [5] => 7
[[1,2,2,5,5]] => [5] => 7
[[1,2,3,3,5]] => [5] => 7
[[1,2,3,4,5]] => [5] => 7
[[1,2,3,5,5]] => [5] => 7
[[1,2,4,4,5]] => [5] => 7
[[1,2,4,5,5]] => [5] => 7
[[1,2,5,5,5]] => [5] => 7
[[1,3,3,3,5]] => [5] => 7
[[1,3,3,4,5]] => [5] => 7
[[1,3,3,5,5]] => [5] => 7
[[1,3,4,4,5]] => [5] => 7
[[1,3,4,5,5]] => [5] => 7
[[1,3,5,5,5]] => [5] => 7
[[1,4,4,4,5]] => [5] => 7
[[1,4,4,5,5]] => [5] => 7
[[1,4,5,5,5]] => [5] => 7
[[1,5,5,5,5]] => [5] => 7
[[2,2,2,2,5]] => [5] => 7
[[2,2,2,3,5]] => [5] => 7
[[2,2,2,4,5]] => [5] => 7
[[2,2,2,5,5]] => [5] => 7
[[2,2,3,3,5]] => [5] => 7
[[2,2,3,4,5]] => [5] => 7
[[2,2,3,5,5]] => [5] => 7
[[2,2,4,4,5]] => [5] => 7
[[2,2,4,5,5]] => [5] => 7
[[2,2,5,5,5]] => [5] => 7
[[2,3,3,3,5]] => [5] => 7
[[2,3,3,4,5]] => [5] => 7
[[2,3,3,5,5]] => [5] => 7
[[2,3,4,4,5]] => [5] => 7
[[2,3,4,5,5]] => [5] => 7
[[2,3,5,5,5]] => [5] => 7
[[2,4,4,4,5]] => [5] => 7
[[2,4,4,5,5]] => [5] => 7
[[2,4,5,5,5]] => [5] => 7
[[2,5,5,5,5]] => [5] => 7
[[3,3,3,3,5]] => [5] => 7
[[3,3,3,4,5]] => [5] => 7
[[3,3,3,5,5]] => [5] => 7
[[3,3,4,4,5]] => [5] => 7
[[3,3,4,5,5]] => [5] => 7
[[3,3,5,5,5]] => [5] => 7
[[3,4,4,4,5]] => [5] => 7
[[3,4,4,5,5]] => [5] => 7
[[3,4,5,5,5]] => [5] => 7
[[3,5,5,5,5]] => [5] => 7
[[4,4,4,4,5]] => [5] => 7
[[4,4,4,5,5]] => [5] => 7
[[4,4,5,5,5]] => [5] => 7
[[4,5,5,5,5]] => [5] => 7
[[5,5,5,5,5]] => [5] => 7
[[1,1,1,1],[5]] => [4,1] => 20
[[1,1,1,2],[5]] => [4,1] => 20
[[1,1,1,5],[2]] => [4,1] => 20
[[1,1,1,3],[5]] => [4,1] => 20
[[1,1,1,5],[3]] => [4,1] => 20
[[1,1,1,4],[5]] => [4,1] => 20
[[1,1,1,5],[4]] => [4,1] => 20
[[1,1,1,5],[5]] => [4,1] => 20
[[1,1,2,2],[5]] => [4,1] => 20
[[1,1,2,5],[2]] => [4,1] => 20
[[1,1,2,3],[5]] => [4,1] => 20
[[1,1,2,5],[3]] => [4,1] => 20
[[1,1,3,5],[2]] => [4,1] => 20
[[1,1,2,4],[5]] => [4,1] => 20
[[1,1,2,5],[4]] => [4,1] => 20
[[1,1,4,5],[2]] => [4,1] => 20
[[1,1,2,5],[5]] => [4,1] => 20
[[1,1,5,5],[2]] => [4,1] => 20
[[1,1,3,3],[5]] => [4,1] => 20
[[1,1,3,5],[3]] => [4,1] => 20
[[1,1,3,4],[5]] => [4,1] => 20
[[1,1,3,5],[4]] => [4,1] => 20
[[1,1,4,5],[3]] => [4,1] => 20
[[1,1,3,5],[5]] => [4,1] => 20
[[1,1,5,5],[3]] => [4,1] => 20
[[1,1,4,4],[5]] => [4,1] => 20
[[1,1,4,5],[4]] => [4,1] => 20
[[1,1,4,5],[5]] => [4,1] => 20
[[1,1,5,5],[4]] => [4,1] => 20
[[1,1,5,5],[5]] => [4,1] => 20
[[1,2,2,2],[5]] => [4,1] => 20
[[1,2,2,5],[2]] => [4,1] => 20
[[1,2,2,3],[5]] => [4,1] => 20
[[1,2,2,5],[3]] => [4,1] => 20
[[1,2,3,5],[2]] => [4,1] => 20
[[1,2,2,4],[5]] => [4,1] => 20
[[1,2,2,5],[4]] => [4,1] => 20
[[1,2,4,5],[2]] => [4,1] => 20
[[1,2,2,5],[5]] => [4,1] => 20
[[1,2,5,5],[2]] => [4,1] => 20
[[1,2,3,3],[5]] => [4,1] => 20
[[1,2,3,5],[3]] => [4,1] => 20
[[1,3,3,5],[2]] => [4,1] => 20
[[1,2,3,4],[5]] => [4,1] => 20
[[1,2,3,5],[4]] => [4,1] => 20
[[1,2,4,5],[3]] => [4,1] => 20
[[1,3,4,5],[2]] => [4,1] => 20
[[1,2,3,5],[5]] => [4,1] => 20
[[1,2,5,5],[3]] => [4,1] => 20
[[1,3,5,5],[2]] => [4,1] => 20
[[1,2,4,4],[5]] => [4,1] => 20
[[1,2,4,5],[4]] => [4,1] => 20
[[1,4,4,5],[2]] => [4,1] => 20
[[1,2,4,5],[5]] => [4,1] => 20
[[1,2,5,5],[4]] => [4,1] => 20
[[1,4,5,5],[2]] => [4,1] => 20
[[1,2,5,5],[5]] => [4,1] => 20
[[1,5,5,5],[2]] => [4,1] => 20
[[1,3,3,3],[5]] => [4,1] => 20
[[1,3,3,5],[3]] => [4,1] => 20
[[1,3,3,4],[5]] => [4,1] => 20
[[1,3,3,5],[4]] => [4,1] => 20
[[1,3,4,5],[3]] => [4,1] => 20
[[1,3,3,5],[5]] => [4,1] => 20
[[1,3,5,5],[3]] => [4,1] => 20
[[1,3,4,4],[5]] => [4,1] => 20
[[1,3,4,5],[4]] => [4,1] => 20
[[1,4,4,5],[3]] => [4,1] => 20
[[1,3,4,5],[5]] => [4,1] => 20
[[1,3,5,5],[4]] => [4,1] => 20
[[1,4,5,5],[3]] => [4,1] => 20
[[1,3,5,5],[5]] => [4,1] => 20
[[1,5,5,5],[3]] => [4,1] => 20
[[1,4,4,4],[5]] => [4,1] => 20
[[1,4,4,5],[4]] => [4,1] => 20
[[1,4,4,5],[5]] => [4,1] => 20
[[1,4,5,5],[4]] => [4,1] => 20
[[1,4,5,5],[5]] => [4,1] => 20
[[1,5,5,5],[4]] => [4,1] => 20
[[1,5,5,5],[5]] => [4,1] => 20
[[2,2,2,2],[5]] => [4,1] => 20
[[2,2,2,3],[5]] => [4,1] => 20
[[2,2,2,5],[3]] => [4,1] => 20
[[2,2,2,4],[5]] => [4,1] => 20
[[2,2,2,5],[4]] => [4,1] => 20
[[2,2,2,5],[5]] => [4,1] => 20
[[2,2,3,3],[5]] => [4,1] => 20
[[2,2,3,5],[3]] => [4,1] => 20
[[2,2,3,4],[5]] => [4,1] => 20
[[2,2,3,5],[4]] => [4,1] => 20
[[2,2,4,5],[3]] => [4,1] => 20
[[2,2,3,5],[5]] => [4,1] => 20
[[2,2,5,5],[3]] => [4,1] => 20
[[2,2,4,4],[5]] => [4,1] => 20
[[2,2,4,5],[4]] => [4,1] => 20
[[2,2,4,5],[5]] => [4,1] => 20
[[2,2,5,5],[4]] => [4,1] => 20
[[2,2,5,5],[5]] => [4,1] => 20
[[2,3,3,3],[5]] => [4,1] => 20
[[2,3,3,5],[3]] => [4,1] => 20
[[2,3,3,4],[5]] => [4,1] => 20
[[2,3,3,5],[4]] => [4,1] => 20
[[2,3,4,5],[3]] => [4,1] => 20
[[2,3,3,5],[5]] => [4,1] => 20
[[2,3,5,5],[3]] => [4,1] => 20
[[2,3,4,4],[5]] => [4,1] => 20
[[2,3,4,5],[4]] => [4,1] => 20
[[2,4,4,5],[3]] => [4,1] => 20
[[2,3,4,5],[5]] => [4,1] => 20
[[2,3,5,5],[4]] => [4,1] => 20
[[2,4,5,5],[3]] => [4,1] => 20
[[2,3,5,5],[5]] => [4,1] => 20
[[2,5,5,5],[3]] => [4,1] => 20
[[2,4,4,4],[5]] => [4,1] => 20
[[2,4,4,5],[4]] => [4,1] => 20
[[2,4,4,5],[5]] => [4,1] => 20
[[2,4,5,5],[4]] => [4,1] => 20
[[2,4,5,5],[5]] => [4,1] => 20
[[2,5,5,5],[4]] => [4,1] => 20
[[2,5,5,5],[5]] => [4,1] => 20
[[3,3,3,3],[5]] => [4,1] => 20
[[3,3,3,4],[5]] => [4,1] => 20
[[3,3,3,5],[4]] => [4,1] => 20
[[3,3,3,5],[5]] => [4,1] => 20
[[3,3,4,4],[5]] => [4,1] => 20
[[3,3,4,5],[4]] => [4,1] => 20
[[3,3,4,5],[5]] => [4,1] => 20
[[3,3,5,5],[4]] => [4,1] => 20
[[3,3,5,5],[5]] => [4,1] => 20
[[3,4,4,4],[5]] => [4,1] => 20
[[3,4,4,5],[4]] => [4,1] => 20
[[3,4,4,5],[5]] => [4,1] => 20
[[3,4,5,5],[4]] => [4,1] => 20
[[3,4,5,5],[5]] => [4,1] => 20
[[3,5,5,5],[4]] => [4,1] => 20
[[3,5,5,5],[5]] => [4,1] => 20
[[4,4,4,4],[5]] => [4,1] => 20
[[4,4,4,5],[5]] => [4,1] => 20
[[4,4,5,5],[5]] => [4,1] => 20
[[4,5,5,5],[5]] => [4,1] => 20
[[1,1,1],[2,5]] => [3,2] => 32
[[1,1,1],[3,5]] => [3,2] => 32
[[1,1,1],[4,5]] => [3,2] => 32
[[1,1,1],[5,5]] => [3,2] => 32
[[1,1,2],[2,5]] => [3,2] => 32
[[1,1,5],[2,2]] => [3,2] => 32
[[1,1,2],[3,5]] => [3,2] => 32
[[1,1,3],[2,5]] => [3,2] => 32
[[1,1,5],[2,3]] => [3,2] => 32
[[1,1,2],[4,5]] => [3,2] => 32
[[1,1,4],[2,5]] => [3,2] => 32
[[1,1,5],[2,4]] => [3,2] => 32
[[1,1,2],[5,5]] => [3,2] => 32
[[1,1,5],[2,5]] => [3,2] => 32
[[1,1,3],[3,5]] => [3,2] => 32
[[1,1,5],[3,3]] => [3,2] => 32
[[1,1,3],[4,5]] => [3,2] => 32
[[1,1,4],[3,5]] => [3,2] => 32
[[1,1,5],[3,4]] => [3,2] => 32
[[1,1,3],[5,5]] => [3,2] => 32
[[1,1,5],[3,5]] => [3,2] => 32
[[1,1,4],[4,5]] => [3,2] => 32
[[1,1,5],[4,4]] => [3,2] => 32
[[1,1,4],[5,5]] => [3,2] => 32
[[1,1,5],[4,5]] => [3,2] => 32
[[1,1,5],[5,5]] => [3,2] => 32
[[1,2,2],[2,5]] => [3,2] => 32
[[1,2,2],[3,5]] => [3,2] => 32
[[1,2,3],[2,5]] => [3,2] => 32
[[1,2,5],[2,3]] => [3,2] => 32
[[1,2,2],[4,5]] => [3,2] => 32
[[1,2,4],[2,5]] => [3,2] => 32
[[1,2,5],[2,4]] => [3,2] => 32
[[1,2,2],[5,5]] => [3,2] => 32
[[1,2,5],[2,5]] => [3,2] => 32
[[1,2,3],[3,5]] => [3,2] => 32
[[1,2,5],[3,3]] => [3,2] => 32
[[1,3,3],[2,5]] => [3,2] => 32
[[1,2,3],[4,5]] => [3,2] => 32
[[1,2,4],[3,5]] => [3,2] => 32
[[1,2,5],[3,4]] => [3,2] => 32
[[1,3,4],[2,5]] => [3,2] => 32
[[1,3,5],[2,4]] => [3,2] => 32
[[1,2,3],[5,5]] => [3,2] => 32
[[1,2,5],[3,5]] => [3,2] => 32
[[1,3,5],[2,5]] => [3,2] => 32
[[1,2,4],[4,5]] => [3,2] => 32
[[1,2,5],[4,4]] => [3,2] => 32
[[1,4,4],[2,5]] => [3,2] => 32
[[1,2,4],[5,5]] => [3,2] => 32
[[1,2,5],[4,5]] => [3,2] => 32
[[1,4,5],[2,5]] => [3,2] => 32
[[1,2,5],[5,5]] => [3,2] => 32
[[1,3,3],[3,5]] => [3,2] => 32
[[1,3,3],[4,5]] => [3,2] => 32
[[1,3,4],[3,5]] => [3,2] => 32
[[1,3,5],[3,4]] => [3,2] => 32
[[1,3,3],[5,5]] => [3,2] => 32
[[1,3,5],[3,5]] => [3,2] => 32
[[1,3,4],[4,5]] => [3,2] => 32
[[1,3,5],[4,4]] => [3,2] => 32
[[1,4,4],[3,5]] => [3,2] => 32
[[1,3,4],[5,5]] => [3,2] => 32
[[1,3,5],[4,5]] => [3,2] => 32
[[1,4,5],[3,5]] => [3,2] => 32
[[1,3,5],[5,5]] => [3,2] => 32
[[1,4,4],[4,5]] => [3,2] => 32
[[1,4,4],[5,5]] => [3,2] => 32
[[1,4,5],[4,5]] => [3,2] => 32
[[1,4,5],[5,5]] => [3,2] => 32
[[2,2,2],[3,5]] => [3,2] => 32
[[2,2,2],[4,5]] => [3,2] => 32
[[2,2,2],[5,5]] => [3,2] => 32
[[2,2,3],[3,5]] => [3,2] => 32
[[2,2,5],[3,3]] => [3,2] => 32
[[2,2,3],[4,5]] => [3,2] => 32
[[2,2,4],[3,5]] => [3,2] => 32
[[2,2,5],[3,4]] => [3,2] => 32
[[2,2,3],[5,5]] => [3,2] => 32
[[2,2,5],[3,5]] => [3,2] => 32
[[2,2,4],[4,5]] => [3,2] => 32
[[2,2,5],[4,4]] => [3,2] => 32
[[2,2,4],[5,5]] => [3,2] => 32
[[2,2,5],[4,5]] => [3,2] => 32
[[2,2,5],[5,5]] => [3,2] => 32
[[2,3,3],[3,5]] => [3,2] => 32
[[2,3,3],[4,5]] => [3,2] => 32
[[2,3,4],[3,5]] => [3,2] => 32
[[2,3,5],[3,4]] => [3,2] => 32
[[2,3,3],[5,5]] => [3,2] => 32
[[2,3,5],[3,5]] => [3,2] => 32
[[2,3,4],[4,5]] => [3,2] => 32
[[2,3,5],[4,4]] => [3,2] => 32
[[2,4,4],[3,5]] => [3,2] => 32
[[2,3,4],[5,5]] => [3,2] => 32
[[2,3,5],[4,5]] => [3,2] => 32
[[2,4,5],[3,5]] => [3,2] => 32
[[2,3,5],[5,5]] => [3,2] => 32
[[2,4,4],[4,5]] => [3,2] => 32
[[2,4,4],[5,5]] => [3,2] => 32
[[2,4,5],[4,5]] => [3,2] => 32
[[2,4,5],[5,5]] => [3,2] => 32
[[3,3,3],[4,5]] => [3,2] => 32
[[3,3,3],[5,5]] => [3,2] => 32
[[3,3,4],[4,5]] => [3,2] => 32
[[3,3,5],[4,4]] => [3,2] => 32
[[3,3,4],[5,5]] => [3,2] => 32
[[3,3,5],[4,5]] => [3,2] => 32
[[3,3,5],[5,5]] => [3,2] => 32
[[3,4,4],[4,5]] => [3,2] => 32
[[3,4,4],[5,5]] => [3,2] => 32
[[3,4,5],[4,5]] => [3,2] => 32
[[3,4,5],[5,5]] => [3,2] => 32
[[4,4,4],[5,5]] => [3,2] => 32
[[4,4,5],[5,5]] => [3,2] => 32
[[1,1,1],[2],[5]] => [3,1,1] => 56
[[1,1,1],[3],[5]] => [3,1,1] => 56
[[1,1,1],[4],[5]] => [3,1,1] => 56
[[1,1,2],[2],[5]] => [3,1,1] => 56
[[1,1,2],[3],[5]] => [3,1,1] => 56
[[1,1,3],[2],[5]] => [3,1,1] => 56
[[1,1,5],[2],[3]] => [3,1,1] => 56
[[1,1,2],[4],[5]] => [3,1,1] => 56
[[1,1,4],[2],[5]] => [3,1,1] => 56
[[1,1,5],[2],[4]] => [3,1,1] => 56
[[1,1,5],[2],[5]] => [3,1,1] => 56
[[1,1,3],[3],[5]] => [3,1,1] => 56
[[1,1,3],[4],[5]] => [3,1,1] => 56
[[1,1,4],[3],[5]] => [3,1,1] => 56
[[1,1,5],[3],[4]] => [3,1,1] => 56
[[1,1,5],[3],[5]] => [3,1,1] => 56
[[1,1,4],[4],[5]] => [3,1,1] => 56
[[1,1,5],[4],[5]] => [3,1,1] => 56
[[1,2,2],[2],[5]] => [3,1,1] => 56
[[1,2,2],[3],[5]] => [3,1,1] => 56
[[1,2,3],[2],[5]] => [3,1,1] => 56
[[1,2,5],[2],[3]] => [3,1,1] => 56
[[1,2,2],[4],[5]] => [3,1,1] => 56
[[1,2,4],[2],[5]] => [3,1,1] => 56
[[1,2,5],[2],[4]] => [3,1,1] => 56
[[1,2,5],[2],[5]] => [3,1,1] => 56
[[1,2,3],[3],[5]] => [3,1,1] => 56
[[1,3,3],[2],[5]] => [3,1,1] => 56
[[1,3,5],[2],[3]] => [3,1,1] => 56
[[1,2,3],[4],[5]] => [3,1,1] => 56
[[1,2,4],[3],[5]] => [3,1,1] => 56
[[1,2,5],[3],[4]] => [3,1,1] => 56
[[1,3,4],[2],[5]] => [3,1,1] => 56
[[1,3,5],[2],[4]] => [3,1,1] => 56
[[1,4,5],[2],[3]] => [3,1,1] => 56
[[1,2,5],[3],[5]] => [3,1,1] => 56
[[1,3,5],[2],[5]] => [3,1,1] => 56
[[1,5,5],[2],[3]] => [3,1,1] => 56
[[1,2,4],[4],[5]] => [3,1,1] => 56
[[1,4,4],[2],[5]] => [3,1,1] => 56
[[1,4,5],[2],[4]] => [3,1,1] => 56
[[1,2,5],[4],[5]] => [3,1,1] => 56
[[1,4,5],[2],[5]] => [3,1,1] => 56
[[1,5,5],[2],[4]] => [3,1,1] => 56
[[1,5,5],[2],[5]] => [3,1,1] => 56
[[1,3,3],[3],[5]] => [3,1,1] => 56
[[1,3,3],[4],[5]] => [3,1,1] => 56
[[1,3,4],[3],[5]] => [3,1,1] => 56
[[1,3,5],[3],[4]] => [3,1,1] => 56
[[1,3,5],[3],[5]] => [3,1,1] => 56
[[1,3,4],[4],[5]] => [3,1,1] => 56
[[1,4,4],[3],[5]] => [3,1,1] => 56
[[1,4,5],[3],[4]] => [3,1,1] => 56
[[1,3,5],[4],[5]] => [3,1,1] => 56
[[1,4,5],[3],[5]] => [3,1,1] => 56
[[1,5,5],[3],[4]] => [3,1,1] => 56
[[1,5,5],[3],[5]] => [3,1,1] => 56
[[1,4,4],[4],[5]] => [3,1,1] => 56
[[1,4,5],[4],[5]] => [3,1,1] => 56
[[1,5,5],[4],[5]] => [3,1,1] => 56
[[2,2,2],[3],[5]] => [3,1,1] => 56
[[2,2,2],[4],[5]] => [3,1,1] => 56
[[2,2,3],[3],[5]] => [3,1,1] => 56
[[2,2,3],[4],[5]] => [3,1,1] => 56
[[2,2,4],[3],[5]] => [3,1,1] => 56
[[2,2,5],[3],[4]] => [3,1,1] => 56
[[2,2,5],[3],[5]] => [3,1,1] => 56
[[2,2,4],[4],[5]] => [3,1,1] => 56
[[2,2,5],[4],[5]] => [3,1,1] => 56
[[2,3,3],[3],[5]] => [3,1,1] => 56
[[2,3,3],[4],[5]] => [3,1,1] => 56
[[2,3,4],[3],[5]] => [3,1,1] => 56
[[2,3,5],[3],[4]] => [3,1,1] => 56
[[2,3,5],[3],[5]] => [3,1,1] => 56
[[2,3,4],[4],[5]] => [3,1,1] => 56
[[2,4,4],[3],[5]] => [3,1,1] => 56
[[2,4,5],[3],[4]] => [3,1,1] => 56
[[2,3,5],[4],[5]] => [3,1,1] => 56
[[2,4,5],[3],[5]] => [3,1,1] => 56
[[2,5,5],[3],[4]] => [3,1,1] => 56
[[2,5,5],[3],[5]] => [3,1,1] => 56
[[2,4,4],[4],[5]] => [3,1,1] => 56
[[2,4,5],[4],[5]] => [3,1,1] => 56
[[2,5,5],[4],[5]] => [3,1,1] => 56
[[3,3,3],[4],[5]] => [3,1,1] => 56
[[3,3,4],[4],[5]] => [3,1,1] => 56
[[3,3,5],[4],[5]] => [3,1,1] => 56
[[3,4,4],[4],[5]] => [3,1,1] => 56
[[3,4,5],[4],[5]] => [3,1,1] => 56
[[3,5,5],[4],[5]] => [3,1,1] => 56
[[1,1],[2,2],[5]] => [2,2,1] => 76
[[1,1],[2,3],[5]] => [2,2,1] => 76
[[1,1],[2,5],[3]] => [2,2,1] => 76
[[1,1],[2,4],[5]] => [2,2,1] => 76
[[1,1],[2,5],[4]] => [2,2,1] => 76
[[1,1],[2,5],[5]] => [2,2,1] => 76
[[1,1],[3,3],[5]] => [2,2,1] => 76
[[1,1],[3,4],[5]] => [2,2,1] => 76
[[1,1],[3,5],[4]] => [2,2,1] => 76
[[1,1],[3,5],[5]] => [2,2,1] => 76
[[1,1],[4,4],[5]] => [2,2,1] => 76
[[1,1],[4,5],[5]] => [2,2,1] => 76
[[1,2],[2,3],[5]] => [2,2,1] => 76
[[1,2],[2,5],[3]] => [2,2,1] => 76
[[1,2],[2,4],[5]] => [2,2,1] => 76
[[1,2],[2,5],[4]] => [2,2,1] => 76
[[1,2],[2,5],[5]] => [2,2,1] => 76
[[1,2],[3,3],[5]] => [2,2,1] => 76
[[1,3],[2,5],[3]] => [2,2,1] => 76
[[1,2],[3,4],[5]] => [2,2,1] => 76
[[1,2],[3,5],[4]] => [2,2,1] => 76
[[1,3],[2,4],[5]] => [2,2,1] => 76
[[1,3],[2,5],[4]] => [2,2,1] => 76
[[1,4],[2,5],[3]] => [2,2,1] => 76
[[1,2],[3,5],[5]] => [2,2,1] => 76
[[1,3],[2,5],[5]] => [2,2,1] => 76
[[1,2],[4,4],[5]] => [2,2,1] => 76
[[1,4],[2,5],[4]] => [2,2,1] => 76
[[1,2],[4,5],[5]] => [2,2,1] => 76
[[1,4],[2,5],[5]] => [2,2,1] => 76
[[1,3],[3,4],[5]] => [2,2,1] => 76
[[1,3],[3,5],[4]] => [2,2,1] => 76
[[1,3],[3,5],[5]] => [2,2,1] => 76
[[1,3],[4,4],[5]] => [2,2,1] => 76
[[1,4],[3,5],[4]] => [2,2,1] => 76
[[1,3],[4,5],[5]] => [2,2,1] => 76
[[1,4],[3,5],[5]] => [2,2,1] => 76
[[1,4],[4,5],[5]] => [2,2,1] => 76
[[2,2],[3,3],[5]] => [2,2,1] => 76
[[2,2],[3,4],[5]] => [2,2,1] => 76
[[2,2],[3,5],[4]] => [2,2,1] => 76
[[2,2],[3,5],[5]] => [2,2,1] => 76
[[2,2],[4,4],[5]] => [2,2,1] => 76
[[2,2],[4,5],[5]] => [2,2,1] => 76
[[2,3],[3,4],[5]] => [2,2,1] => 76
[[2,3],[3,5],[4]] => [2,2,1] => 76
[[2,3],[3,5],[5]] => [2,2,1] => 76
[[2,3],[4,4],[5]] => [2,2,1] => 76
[[2,4],[3,5],[4]] => [2,2,1] => 76
[[2,3],[4,5],[5]] => [2,2,1] => 76
[[2,4],[3,5],[5]] => [2,2,1] => 76
[[2,4],[4,5],[5]] => [2,2,1] => 76
[[3,3],[4,4],[5]] => [2,2,1] => 76
[[3,3],[4,5],[5]] => [2,2,1] => 76
[[3,4],[4,5],[5]] => [2,2,1] => 76
[[1,1],[2],[3],[5]] => [2,1,1,1] => 136
[[1,1],[2],[4],[5]] => [2,1,1,1] => 136
[[1,1],[3],[4],[5]] => [2,1,1,1] => 136
[[1,2],[2],[3],[5]] => [2,1,1,1] => 136
[[1,2],[2],[4],[5]] => [2,1,1,1] => 136
[[1,3],[2],[3],[5]] => [2,1,1,1] => 136
[[1,2],[3],[4],[5]] => [2,1,1,1] => 136
[[1,3],[2],[4],[5]] => [2,1,1,1] => 136
[[1,4],[2],[3],[5]] => [2,1,1,1] => 136
[[1,5],[2],[3],[4]] => [2,1,1,1] => 136
[[1,5],[2],[3],[5]] => [2,1,1,1] => 136
[[1,4],[2],[4],[5]] => [2,1,1,1] => 136
[[1,5],[2],[4],[5]] => [2,1,1,1] => 136
[[1,3],[3],[4],[5]] => [2,1,1,1] => 136
[[1,4],[3],[4],[5]] => [2,1,1,1] => 136
[[1,5],[3],[4],[5]] => [2,1,1,1] => 136
[[2,2],[3],[4],[5]] => [2,1,1,1] => 136
[[2,3],[3],[4],[5]] => [2,1,1,1] => 136
[[2,4],[3],[4],[5]] => [2,1,1,1] => 136
[[2,5],[3],[4],[5]] => [2,1,1,1] => 136
[[1],[2],[3],[4],[5]] => [1,1,1,1,1] => 246
[[1,1,1,1,1,4]] => [6] => 11
[[1,1,1,1,2,4]] => [6] => 11
[[1,1,1,1,3,4]] => [6] => 11
[[1,1,1,1,4,4]] => [6] => 11
[[1,1,1,2,2,4]] => [6] => 11
[[1,1,1,2,3,4]] => [6] => 11
[[1,1,1,2,4,4]] => [6] => 11
[[1,1,1,3,3,4]] => [6] => 11
[[1,1,1,3,4,4]] => [6] => 11
[[1,1,1,4,4,4]] => [6] => 11
[[1,1,2,2,2,4]] => [6] => 11
[[1,1,2,2,3,4]] => [6] => 11
[[1,1,2,2,4,4]] => [6] => 11
[[1,1,2,3,3,4]] => [6] => 11
[[1,1,2,3,4,4]] => [6] => 11
[[1,1,2,4,4,4]] => [6] => 11
[[1,1,3,3,3,4]] => [6] => 11
[[1,1,3,3,4,4]] => [6] => 11
[[1,1,3,4,4,4]] => [6] => 11
[[1,1,4,4,4,4]] => [6] => 11
[[1,2,2,2,2,4]] => [6] => 11
[[1,2,2,2,3,4]] => [6] => 11
[[1,2,2,2,4,4]] => [6] => 11
[[1,2,2,3,3,4]] => [6] => 11
[[1,2,2,3,4,4]] => [6] => 11
[[1,2,2,4,4,4]] => [6] => 11
[[1,2,3,3,3,4]] => [6] => 11
[[1,2,3,3,4,4]] => [6] => 11
[[1,2,3,4,4,4]] => [6] => 11
[[1,2,4,4,4,4]] => [6] => 11
[[1,3,3,3,3,4]] => [6] => 11
[[1,3,3,3,4,4]] => [6] => 11
[[1,3,3,4,4,4]] => [6] => 11
[[1,3,4,4,4,4]] => [6] => 11
[[1,4,4,4,4,4]] => [6] => 11
[[2,2,2,2,2,4]] => [6] => 11
[[2,2,2,2,3,4]] => [6] => 11
[[2,2,2,2,4,4]] => [6] => 11
[[2,2,2,3,3,4]] => [6] => 11
[[2,2,2,3,4,4]] => [6] => 11
[[2,2,2,4,4,4]] => [6] => 11
[[2,2,3,3,3,4]] => [6] => 11
[[2,2,3,3,4,4]] => [6] => 11
[[2,2,3,4,4,4]] => [6] => 11
[[2,2,4,4,4,4]] => [6] => 11
[[2,3,3,3,3,4]] => [6] => 11
[[2,3,3,3,4,4]] => [6] => 11
[[2,3,3,4,4,4]] => [6] => 11
[[2,3,4,4,4,4]] => [6] => 11
[[2,4,4,4,4,4]] => [6] => 11
[[3,3,3,3,3,4]] => [6] => 11
[[3,3,3,3,4,4]] => [6] => 11
[[3,3,3,4,4,4]] => [6] => 11
[[3,3,4,4,4,4]] => [6] => 11
[[3,4,4,4,4,4]] => [6] => 11
[[4,4,4,4,4,4]] => [6] => 11
[[1,1,1,1,1],[4]] => [5,1] => 35
[[1,1,1,1,2],[4]] => [5,1] => 35
[[1,1,1,1,4],[2]] => [5,1] => 35
[[1,1,1,1,3],[4]] => [5,1] => 35
[[1,1,1,1,4],[3]] => [5,1] => 35
[[1,1,1,1,4],[4]] => [5,1] => 35
[[1,1,1,2,2],[4]] => [5,1] => 35
[[1,1,1,2,4],[2]] => [5,1] => 35
[[1,1,1,2,3],[4]] => [5,1] => 35
[[1,1,1,2,4],[3]] => [5,1] => 35
[[1,1,1,3,4],[2]] => [5,1] => 35
[[1,1,1,2,4],[4]] => [5,1] => 35
[[1,1,1,4,4],[2]] => [5,1] => 35
[[1,1,1,3,3],[4]] => [5,1] => 35
[[1,1,1,3,4],[3]] => [5,1] => 35
[[1,1,1,3,4],[4]] => [5,1] => 35
[[1,1,1,4,4],[3]] => [5,1] => 35
[[1,1,1,4,4],[4]] => [5,1] => 35
[[1,1,2,2,2],[4]] => [5,1] => 35
[[1,1,2,2,4],[2]] => [5,1] => 35
[[1,1,2,2,3],[4]] => [5,1] => 35
[[1,1,2,2,4],[3]] => [5,1] => 35
[[1,1,2,3,4],[2]] => [5,1] => 35
[[1,1,2,2,4],[4]] => [5,1] => 35
[[1,1,2,4,4],[2]] => [5,1] => 35
[[1,1,2,3,3],[4]] => [5,1] => 35
[[1,1,2,3,4],[3]] => [5,1] => 35
[[1,1,3,3,4],[2]] => [5,1] => 35
[[1,1,2,3,4],[4]] => [5,1] => 35
[[1,1,2,4,4],[3]] => [5,1] => 35
[[1,1,3,4,4],[2]] => [5,1] => 35
[[1,1,2,4,4],[4]] => [5,1] => 35
[[1,1,4,4,4],[2]] => [5,1] => 35
[[1,1,3,3,3],[4]] => [5,1] => 35
[[1,1,3,3,4],[3]] => [5,1] => 35
[[1,1,3,3,4],[4]] => [5,1] => 35
[[1,1,3,4,4],[3]] => [5,1] => 35
[[1,1,3,4,4],[4]] => [5,1] => 35
[[1,1,4,4,4],[3]] => [5,1] => 35
[[1,1,4,4,4],[4]] => [5,1] => 35
[[1,2,2,2,2],[4]] => [5,1] => 35
[[1,2,2,2,4],[2]] => [5,1] => 35
[[1,2,2,2,3],[4]] => [5,1] => 35
[[1,2,2,2,4],[3]] => [5,1] => 35
[[1,2,2,3,4],[2]] => [5,1] => 35
[[1,2,2,2,4],[4]] => [5,1] => 35
[[1,2,2,4,4],[2]] => [5,1] => 35
[[1,2,2,3,3],[4]] => [5,1] => 35
[[1,2,2,3,4],[3]] => [5,1] => 35
[[1,2,3,3,4],[2]] => [5,1] => 35
[[1,2,2,3,4],[4]] => [5,1] => 35
[[1,2,2,4,4],[3]] => [5,1] => 35
[[1,2,3,4,4],[2]] => [5,1] => 35
[[1,2,2,4,4],[4]] => [5,1] => 35
[[1,2,4,4,4],[2]] => [5,1] => 35
[[1,2,3,3,3],[4]] => [5,1] => 35
[[1,2,3,3,4],[3]] => [5,1] => 35
[[1,3,3,3,4],[2]] => [5,1] => 35
[[1,2,3,3,4],[4]] => [5,1] => 35
[[1,2,3,4,4],[3]] => [5,1] => 35
[[1,3,3,4,4],[2]] => [5,1] => 35
[[1,2,3,4,4],[4]] => [5,1] => 35
[[1,2,4,4,4],[3]] => [5,1] => 35
[[1,3,4,4,4],[2]] => [5,1] => 35
[[1,2,4,4,4],[4]] => [5,1] => 35
[[1,4,4,4,4],[2]] => [5,1] => 35
[[1,3,3,3,3],[4]] => [5,1] => 35
[[1,3,3,3,4],[3]] => [5,1] => 35
[[1,3,3,3,4],[4]] => [5,1] => 35
[[1,3,3,4,4],[3]] => [5,1] => 35
[[1,3,3,4,4],[4]] => [5,1] => 35
[[1,3,4,4,4],[3]] => [5,1] => 35
[[1,3,4,4,4],[4]] => [5,1] => 35
[[1,4,4,4,4],[3]] => [5,1] => 35
[[1,4,4,4,4],[4]] => [5,1] => 35
[[2,2,2,2,2],[4]] => [5,1] => 35
[[2,2,2,2,3],[4]] => [5,1] => 35
[[2,2,2,2,4],[3]] => [5,1] => 35
[[2,2,2,2,4],[4]] => [5,1] => 35
[[2,2,2,3,3],[4]] => [5,1] => 35
[[2,2,2,3,4],[3]] => [5,1] => 35
[[2,2,2,3,4],[4]] => [5,1] => 35
[[2,2,2,4,4],[3]] => [5,1] => 35
[[2,2,2,4,4],[4]] => [5,1] => 35
[[2,2,3,3,3],[4]] => [5,1] => 35
[[2,2,3,3,4],[3]] => [5,1] => 35
[[2,2,3,3,4],[4]] => [5,1] => 35
[[2,2,3,4,4],[3]] => [5,1] => 35
[[2,2,3,4,4],[4]] => [5,1] => 35
[[2,2,4,4,4],[3]] => [5,1] => 35
[[2,2,4,4,4],[4]] => [5,1] => 35
[[2,3,3,3,3],[4]] => [5,1] => 35
[[2,3,3,3,4],[3]] => [5,1] => 35
[[2,3,3,3,4],[4]] => [5,1] => 35
[[2,3,3,4,4],[3]] => [5,1] => 35
[[2,3,3,4,4],[4]] => [5,1] => 35
[[2,3,4,4,4],[3]] => [5,1] => 35
[[2,3,4,4,4],[4]] => [5,1] => 35
[[2,4,4,4,4],[3]] => [5,1] => 35
[[2,4,4,4,4],[4]] => [5,1] => 35
[[3,3,3,3,3],[4]] => [5,1] => 35
[[3,3,3,3,4],[4]] => [5,1] => 35
[[3,3,3,4,4],[4]] => [5,1] => 35
[[3,3,4,4,4],[4]] => [5,1] => 35
[[3,4,4,4,4],[4]] => [5,1] => 35
[[1,1,1,1],[2,4]] => [4,2] => 65
[[1,1,1,1],[3,4]] => [4,2] => 65
[[1,1,1,1],[4,4]] => [4,2] => 65
[[1,1,1,2],[2,4]] => [4,2] => 65
[[1,1,1,4],[2,2]] => [4,2] => 65
[[1,1,1,2],[3,4]] => [4,2] => 65
[[1,1,1,3],[2,4]] => [4,2] => 65
[[1,1,1,4],[2,3]] => [4,2] => 65
[[1,1,1,2],[4,4]] => [4,2] => 65
[[1,1,1,4],[2,4]] => [4,2] => 65
[[1,1,1,3],[3,4]] => [4,2] => 65
[[1,1,1,4],[3,3]] => [4,2] => 65
[[1,1,1,3],[4,4]] => [4,2] => 65
[[1,1,1,4],[3,4]] => [4,2] => 65
[[1,1,1,4],[4,4]] => [4,2] => 65
[[1,1,2,2],[2,4]] => [4,2] => 65
[[1,1,2,4],[2,2]] => [4,2] => 65
[[1,1,2,2],[3,4]] => [4,2] => 65
[[1,1,2,3],[2,4]] => [4,2] => 65
[[1,1,2,4],[2,3]] => [4,2] => 65
[[1,1,3,4],[2,2]] => [4,2] => 65
[[1,1,2,2],[4,4]] => [4,2] => 65
[[1,1,2,4],[2,4]] => [4,2] => 65
[[1,1,4,4],[2,2]] => [4,2] => 65
[[1,1,2,3],[3,4]] => [4,2] => 65
[[1,1,2,4],[3,3]] => [4,2] => 65
[[1,1,3,3],[2,4]] => [4,2] => 65
[[1,1,3,4],[2,3]] => [4,2] => 65
[[1,1,2,3],[4,4]] => [4,2] => 65
[[1,1,2,4],[3,4]] => [4,2] => 65
[[1,1,3,4],[2,4]] => [4,2] => 65
[[1,1,4,4],[2,3]] => [4,2] => 65
[[1,1,2,4],[4,4]] => [4,2] => 65
[[1,1,4,4],[2,4]] => [4,2] => 65
[[1,1,3,3],[3,4]] => [4,2] => 65
[[1,1,3,4],[3,3]] => [4,2] => 65
[[1,1,3,3],[4,4]] => [4,2] => 65
[[1,1,3,4],[3,4]] => [4,2] => 65
[[1,1,4,4],[3,3]] => [4,2] => 65
[[1,1,3,4],[4,4]] => [4,2] => 65
[[1,1,4,4],[3,4]] => [4,2] => 65
[[1,1,4,4],[4,4]] => [4,2] => 65
[[1,2,2,2],[2,4]] => [4,2] => 65
[[1,2,2,2],[3,4]] => [4,2] => 65
[[1,2,2,3],[2,4]] => [4,2] => 65
[[1,2,2,4],[2,3]] => [4,2] => 65
[[1,2,2,2],[4,4]] => [4,2] => 65
[[1,2,2,4],[2,4]] => [4,2] => 65
[[1,2,2,3],[3,4]] => [4,2] => 65
[[1,2,2,4],[3,3]] => [4,2] => 65
[[1,2,3,3],[2,4]] => [4,2] => 65
[[1,2,3,4],[2,3]] => [4,2] => 65
[[1,2,2,3],[4,4]] => [4,2] => 65
[[1,2,2,4],[3,4]] => [4,2] => 65
[[1,2,3,4],[2,4]] => [4,2] => 65
[[1,2,4,4],[2,3]] => [4,2] => 65
[[1,2,2,4],[4,4]] => [4,2] => 65
[[1,2,4,4],[2,4]] => [4,2] => 65
[[1,2,3,3],[3,4]] => [4,2] => 65
[[1,2,3,4],[3,3]] => [4,2] => 65
[[1,3,3,3],[2,4]] => [4,2] => 65
[[1,2,3,3],[4,4]] => [4,2] => 65
[[1,2,3,4],[3,4]] => [4,2] => 65
[[1,2,4,4],[3,3]] => [4,2] => 65
[[1,3,3,4],[2,4]] => [4,2] => 65
[[1,2,3,4],[4,4]] => [4,2] => 65
[[1,2,4,4],[3,4]] => [4,2] => 65
[[1,3,4,4],[2,4]] => [4,2] => 65
[[1,2,4,4],[4,4]] => [4,2] => 65
[[1,3,3,3],[3,4]] => [4,2] => 65
[[1,3,3,3],[4,4]] => [4,2] => 65
[[1,3,3,4],[3,4]] => [4,2] => 65
[[1,3,3,4],[4,4]] => [4,2] => 65
[[1,3,4,4],[3,4]] => [4,2] => 65
[[1,3,4,4],[4,4]] => [4,2] => 65
[[2,2,2,2],[3,4]] => [4,2] => 65
[[2,2,2,2],[4,4]] => [4,2] => 65
[[2,2,2,3],[3,4]] => [4,2] => 65
[[2,2,2,4],[3,3]] => [4,2] => 65
[[2,2,2,3],[4,4]] => [4,2] => 65
[[2,2,2,4],[3,4]] => [4,2] => 65
[[2,2,2,4],[4,4]] => [4,2] => 65
[[2,2,3,3],[3,4]] => [4,2] => 65
[[2,2,3,4],[3,3]] => [4,2] => 65
[[2,2,3,3],[4,4]] => [4,2] => 65
[[2,2,3,4],[3,4]] => [4,2] => 65
[[2,2,4,4],[3,3]] => [4,2] => 65
[[2,2,3,4],[4,4]] => [4,2] => 65
[[2,2,4,4],[3,4]] => [4,2] => 65
[[2,2,4,4],[4,4]] => [4,2] => 65
[[2,3,3,3],[3,4]] => [4,2] => 65
[[2,3,3,3],[4,4]] => [4,2] => 65
[[2,3,3,4],[3,4]] => [4,2] => 65
[[2,3,3,4],[4,4]] => [4,2] => 65
[[2,3,4,4],[3,4]] => [4,2] => 65
[[2,3,4,4],[4,4]] => [4,2] => 65
[[3,3,3,3],[4,4]] => [4,2] => 65
[[3,3,3,4],[4,4]] => [4,2] => 65
[[3,3,4,4],[4,4]] => [4,2] => 65
[[1,1,1,1],[2],[4]] => [4,1,1] => 114
[[1,1,1,1],[3],[4]] => [4,1,1] => 114
[[1,1,1,2],[2],[4]] => [4,1,1] => 114
[[1,1,1,2],[3],[4]] => [4,1,1] => 114
[[1,1,1,3],[2],[4]] => [4,1,1] => 114
[[1,1,1,4],[2],[3]] => [4,1,1] => 114
[[1,1,1,4],[2],[4]] => [4,1,1] => 114
[[1,1,1,3],[3],[4]] => [4,1,1] => 114
[[1,1,1,4],[3],[4]] => [4,1,1] => 114
[[1,1,2,2],[2],[4]] => [4,1,1] => 114
[[1,1,2,2],[3],[4]] => [4,1,1] => 114
[[1,1,2,3],[2],[4]] => [4,1,1] => 114
[[1,1,2,4],[2],[3]] => [4,1,1] => 114
[[1,1,2,4],[2],[4]] => [4,1,1] => 114
[[1,1,2,3],[3],[4]] => [4,1,1] => 114
[[1,1,3,3],[2],[4]] => [4,1,1] => 114
[[1,1,3,4],[2],[3]] => [4,1,1] => 114
[[1,1,2,4],[3],[4]] => [4,1,1] => 114
[[1,1,3,4],[2],[4]] => [4,1,1] => 114
[[1,1,4,4],[2],[3]] => [4,1,1] => 114
[[1,1,4,4],[2],[4]] => [4,1,1] => 114
[[1,1,3,3],[3],[4]] => [4,1,1] => 114
[[1,1,3,4],[3],[4]] => [4,1,1] => 114
[[1,1,4,4],[3],[4]] => [4,1,1] => 114
[[1,2,2,2],[2],[4]] => [4,1,1] => 114
[[1,2,2,2],[3],[4]] => [4,1,1] => 114
[[1,2,2,3],[2],[4]] => [4,1,1] => 114
[[1,2,2,4],[2],[3]] => [4,1,1] => 114
[[1,2,2,4],[2],[4]] => [4,1,1] => 114
[[1,2,2,3],[3],[4]] => [4,1,1] => 114
[[1,2,3,3],[2],[4]] => [4,1,1] => 114
[[1,2,3,4],[2],[3]] => [4,1,1] => 114
[[1,2,2,4],[3],[4]] => [4,1,1] => 114
[[1,2,3,4],[2],[4]] => [4,1,1] => 114
[[1,2,4,4],[2],[3]] => [4,1,1] => 114
[[1,2,4,4],[2],[4]] => [4,1,1] => 114
[[1,2,3,3],[3],[4]] => [4,1,1] => 114
[[1,3,3,3],[2],[4]] => [4,1,1] => 114
[[1,3,3,4],[2],[3]] => [4,1,1] => 114
[[1,2,3,4],[3],[4]] => [4,1,1] => 114
[[1,3,3,4],[2],[4]] => [4,1,1] => 114
[[1,3,4,4],[2],[3]] => [4,1,1] => 114
[[1,2,4,4],[3],[4]] => [4,1,1] => 114
[[1,3,4,4],[2],[4]] => [4,1,1] => 114
[[1,4,4,4],[2],[3]] => [4,1,1] => 114
[[1,4,4,4],[2],[4]] => [4,1,1] => 114
[[1,3,3,3],[3],[4]] => [4,1,1] => 114
[[1,3,3,4],[3],[4]] => [4,1,1] => 114
[[1,3,4,4],[3],[4]] => [4,1,1] => 114
[[1,4,4,4],[3],[4]] => [4,1,1] => 114
[[2,2,2,2],[3],[4]] => [4,1,1] => 114
[[2,2,2,3],[3],[4]] => [4,1,1] => 114
[[2,2,2,4],[3],[4]] => [4,1,1] => 114
[[2,2,3,3],[3],[4]] => [4,1,1] => 114
[[2,2,3,4],[3],[4]] => [4,1,1] => 114
[[2,2,4,4],[3],[4]] => [4,1,1] => 114
[[2,3,3,3],[3],[4]] => [4,1,1] => 114
[[2,3,3,4],[3],[4]] => [4,1,1] => 114
[[2,3,4,4],[3],[4]] => [4,1,1] => 114
[[2,4,4,4],[3],[4]] => [4,1,1] => 114
[[1,1,1],[2,2,4]] => [3,3] => 79
[[1,1,1],[2,3,4]] => [3,3] => 79
[[1,1,1],[2,4,4]] => [3,3] => 79
[[1,1,1],[3,3,4]] => [3,3] => 79
[[1,1,1],[3,4,4]] => [3,3] => 79
[[1,1,1],[4,4,4]] => [3,3] => 79
[[1,1,2],[2,2,4]] => [3,3] => 79
[[1,1,2],[2,3,4]] => [3,3] => 79
[[1,1,3],[2,2,4]] => [3,3] => 79
[[1,1,2],[2,4,4]] => [3,3] => 79
[[1,1,2],[3,3,4]] => [3,3] => 79
[[1,1,3],[2,3,4]] => [3,3] => 79
[[1,1,2],[3,4,4]] => [3,3] => 79
[[1,1,3],[2,4,4]] => [3,3] => 79
[[1,1,2],[4,4,4]] => [3,3] => 79
[[1,1,3],[3,3,4]] => [3,3] => 79
[[1,1,3],[3,4,4]] => [3,3] => 79
[[1,1,3],[4,4,4]] => [3,3] => 79
[[1,2,2],[2,3,4]] => [3,3] => 79
[[1,2,2],[2,4,4]] => [3,3] => 79
[[1,2,2],[3,3,4]] => [3,3] => 79
[[1,2,3],[2,3,4]] => [3,3] => 79
[[1,2,2],[3,4,4]] => [3,3] => 79
[[1,2,3],[2,4,4]] => [3,3] => 79
[[1,2,2],[4,4,4]] => [3,3] => 79
[[1,2,3],[3,3,4]] => [3,3] => 79
[[1,2,3],[3,4,4]] => [3,3] => 79
[[1,3,3],[2,4,4]] => [3,3] => 79
[[1,2,3],[4,4,4]] => [3,3] => 79
[[1,3,3],[3,4,4]] => [3,3] => 79
[[1,3,3],[4,4,4]] => [3,3] => 79
[[2,2,2],[3,3,4]] => [3,3] => 79
[[2,2,2],[3,4,4]] => [3,3] => 79
[[2,2,2],[4,4,4]] => [3,3] => 79
[[2,2,3],[3,3,4]] => [3,3] => 79
[[2,2,3],[3,4,4]] => [3,3] => 79
[[2,2,3],[4,4,4]] => [3,3] => 79
[[2,3,3],[3,4,4]] => [3,3] => 79
[[2,3,3],[4,4,4]] => [3,3] => 79
[[3,3,3],[4,4,4]] => [3,3] => 79
[[1,1,1],[2,2],[4]] => [3,2,1] => 191
[[1,1,1],[2,3],[4]] => [3,2,1] => 191
[[1,1,1],[2,4],[3]] => [3,2,1] => 191
[[1,1,1],[2,4],[4]] => [3,2,1] => 191
[[1,1,1],[3,3],[4]] => [3,2,1] => 191
[[1,1,1],[3,4],[4]] => [3,2,1] => 191
[[1,1,2],[2,2],[4]] => [3,2,1] => 191
[[1,1,2],[2,3],[4]] => [3,2,1] => 191
[[1,1,2],[2,4],[3]] => [3,2,1] => 191
[[1,1,3],[2,2],[4]] => [3,2,1] => 191
[[1,1,4],[2,2],[3]] => [3,2,1] => 191
[[1,1,2],[2,4],[4]] => [3,2,1] => 191
[[1,1,4],[2,2],[4]] => [3,2,1] => 191
[[1,1,2],[3,3],[4]] => [3,2,1] => 191
[[1,1,3],[2,3],[4]] => [3,2,1] => 191
[[1,1,3],[2,4],[3]] => [3,2,1] => 191
[[1,1,4],[2,3],[3]] => [3,2,1] => 191
[[1,1,2],[3,4],[4]] => [3,2,1] => 191
[[1,1,3],[2,4],[4]] => [3,2,1] => 191
[[1,1,4],[2,3],[4]] => [3,2,1] => 191
[[1,1,4],[2,4],[3]] => [3,2,1] => 191
[[1,1,4],[2,4],[4]] => [3,2,1] => 191
[[1,1,3],[3,3],[4]] => [3,2,1] => 191
[[1,1,3],[3,4],[4]] => [3,2,1] => 191
[[1,1,4],[3,3],[4]] => [3,2,1] => 191
[[1,1,4],[3,4],[4]] => [3,2,1] => 191
[[1,2,2],[2,3],[4]] => [3,2,1] => 191
[[1,2,2],[2,4],[3]] => [3,2,1] => 191
[[1,2,2],[2,4],[4]] => [3,2,1] => 191
[[1,2,2],[3,3],[4]] => [3,2,1] => 191
[[1,2,3],[2,3],[4]] => [3,2,1] => 191
[[1,2,3],[2,4],[3]] => [3,2,1] => 191
[[1,2,4],[2,3],[3]] => [3,2,1] => 191
[[1,2,2],[3,4],[4]] => [3,2,1] => 191
[[1,2,3],[2,4],[4]] => [3,2,1] => 191
[[1,2,4],[2,3],[4]] => [3,2,1] => 191
[[1,2,4],[2,4],[3]] => [3,2,1] => 191
[[1,2,4],[2,4],[4]] => [3,2,1] => 191
[[1,2,3],[3,3],[4]] => [3,2,1] => 191
[[1,3,3],[2,4],[3]] => [3,2,1] => 191
[[1,2,3],[3,4],[4]] => [3,2,1] => 191
[[1,2,4],[3,3],[4]] => [3,2,1] => 191
[[1,3,3],[2,4],[4]] => [3,2,1] => 191
[[1,3,4],[2,4],[3]] => [3,2,1] => 191
[[1,2,4],[3,4],[4]] => [3,2,1] => 191
[[1,3,4],[2,4],[4]] => [3,2,1] => 191
[[1,3,3],[3,4],[4]] => [3,2,1] => 191
[[1,3,4],[3,4],[4]] => [3,2,1] => 191
[[2,2,2],[3,3],[4]] => [3,2,1] => 191
[[2,2,2],[3,4],[4]] => [3,2,1] => 191
[[2,2,3],[3,3],[4]] => [3,2,1] => 191
[[2,2,3],[3,4],[4]] => [3,2,1] => 191
[[2,2,4],[3,3],[4]] => [3,2,1] => 191
[[2,2,4],[3,4],[4]] => [3,2,1] => 191
[[2,3,3],[3,4],[4]] => [3,2,1] => 191
[[2,3,4],[3,4],[4]] => [3,2,1] => 191
[[1,1,1],[2],[3],[4]] => [3,1,1,1] => 344
[[1,1,2],[2],[3],[4]] => [3,1,1,1] => 344
[[1,1,3],[2],[3],[4]] => [3,1,1,1] => 344
[[1,1,4],[2],[3],[4]] => [3,1,1,1] => 344
[[1,2,2],[2],[3],[4]] => [3,1,1,1] => 344
[[1,2,3],[2],[3],[4]] => [3,1,1,1] => 344
[[1,2,4],[2],[3],[4]] => [3,1,1,1] => 344
[[1,3,3],[2],[3],[4]] => [3,1,1,1] => 344
[[1,3,4],[2],[3],[4]] => [3,1,1,1] => 344
[[1,4,4],[2],[3],[4]] => [3,1,1,1] => 344
[[1,1],[2,2],[3,4]] => [2,2,2] => 263
[[1,1],[2,2],[4,4]] => [2,2,2] => 263
[[1,1],[2,3],[3,4]] => [2,2,2] => 263
[[1,1],[2,3],[4,4]] => [2,2,2] => 263
[[1,1],[3,3],[4,4]] => [2,2,2] => 263
[[1,2],[2,3],[3,4]] => [2,2,2] => 263
[[1,2],[2,3],[4,4]] => [2,2,2] => 263
[[1,2],[3,3],[4,4]] => [2,2,2] => 263
[[2,2],[3,3],[4,4]] => [2,2,2] => 263
[[1,1],[2,2],[3],[4]] => [2,2,1,1] => 476
[[1,1],[2,3],[3],[4]] => [2,2,1,1] => 476
[[1,1],[2,4],[3],[4]] => [2,2,1,1] => 476
[[1,2],[2,3],[3],[4]] => [2,2,1,1] => 476
[[1,2],[2,4],[3],[4]] => [2,2,1,1] => 476
[[1,3],[2,4],[3],[4]] => [2,2,1,1] => 476
[[1,1,1,1,1,1,3]] => [7] => 15
[[1,1,1,1,1,2,3]] => [7] => 15
[[1,1,1,1,1,3,3]] => [7] => 15
[[1,1,1,1,2,2,3]] => [7] => 15
[[1,1,1,1,2,3,3]] => [7] => 15
[[1,1,1,1,3,3,3]] => [7] => 15
[[1,1,1,2,2,2,3]] => [7] => 15
[[1,1,1,2,2,3,3]] => [7] => 15
[[1,1,1,2,3,3,3]] => [7] => 15
[[1,1,1,3,3,3,3]] => [7] => 15
[[1,1,2,2,2,2,3]] => [7] => 15
[[1,1,2,2,2,3,3]] => [7] => 15
[[1,1,2,2,3,3,3]] => [7] => 15
[[1,1,2,3,3,3,3]] => [7] => 15
[[1,1,3,3,3,3,3]] => [7] => 15
[[1,2,2,2,2,2,3]] => [7] => 15
[[1,2,2,2,2,3,3]] => [7] => 15
[[1,2,2,2,3,3,3]] => [7] => 15
[[1,2,2,3,3,3,3]] => [7] => 15
[[1,2,3,3,3,3,3]] => [7] => 15
[[1,3,3,3,3,3,3]] => [7] => 15
[[2,2,2,2,2,2,3]] => [7] => 15
[[2,2,2,2,2,3,3]] => [7] => 15
[[2,2,2,2,3,3,3]] => [7] => 15
[[2,2,2,3,3,3,3]] => [7] => 15
[[2,2,3,3,3,3,3]] => [7] => 15
[[2,3,3,3,3,3,3]] => [7] => 15
[[3,3,3,3,3,3,3]] => [7] => 15
[[1,1,1,1,1,1],[3]] => [6,1] => 54
[[1,1,1,1,1,2],[3]] => [6,1] => 54
[[1,1,1,1,1,3],[2]] => [6,1] => 54
[[1,1,1,1,1,3],[3]] => [6,1] => 54
[[1,1,1,1,2,2],[3]] => [6,1] => 54
[[1,1,1,1,2,3],[2]] => [6,1] => 54
[[1,1,1,1,2,3],[3]] => [6,1] => 54
[[1,1,1,1,3,3],[2]] => [6,1] => 54
[[1,1,1,1,3,3],[3]] => [6,1] => 54
[[1,1,1,2,2,2],[3]] => [6,1] => 54
[[1,1,1,2,2,3],[2]] => [6,1] => 54
[[1,1,1,2,2,3],[3]] => [6,1] => 54
[[1,1,1,2,3,3],[2]] => [6,1] => 54
[[1,1,1,2,3,3],[3]] => [6,1] => 54
[[1,1,1,3,3,3],[2]] => [6,1] => 54
[[1,1,1,3,3,3],[3]] => [6,1] => 54
[[1,1,2,2,2,2],[3]] => [6,1] => 54
[[1,1,2,2,2,3],[2]] => [6,1] => 54
[[1,1,2,2,2,3],[3]] => [6,1] => 54
[[1,1,2,2,3,3],[2]] => [6,1] => 54
[[1,1,2,2,3,3],[3]] => [6,1] => 54
[[1,1,2,3,3,3],[2]] => [6,1] => 54
[[1,1,2,3,3,3],[3]] => [6,1] => 54
[[1,1,3,3,3,3],[2]] => [6,1] => 54
[[1,1,3,3,3,3],[3]] => [6,1] => 54
[[1,2,2,2,2,2],[3]] => [6,1] => 54
[[1,2,2,2,2,3],[2]] => [6,1] => 54
[[1,2,2,2,2,3],[3]] => [6,1] => 54
[[1,2,2,2,3,3],[2]] => [6,1] => 54
[[1,2,2,2,3,3],[3]] => [6,1] => 54
[[1,2,2,3,3,3],[2]] => [6,1] => 54
[[1,2,2,3,3,3],[3]] => [6,1] => 54
[[1,2,3,3,3,3],[2]] => [6,1] => 54
[[1,2,3,3,3,3],[3]] => [6,1] => 54
[[1,3,3,3,3,3],[2]] => [6,1] => 54
[[1,3,3,3,3,3],[3]] => [6,1] => 54
[[2,2,2,2,2,2],[3]] => [6,1] => 54
[[2,2,2,2,2,3],[3]] => [6,1] => 54
[[2,2,2,2,3,3],[3]] => [6,1] => 54
[[2,2,2,3,3,3],[3]] => [6,1] => 54
[[2,2,3,3,3,3],[3]] => [6,1] => 54
[[2,3,3,3,3,3],[3]] => [6,1] => 54
[[1,1,1,1,1],[2,3]] => [5,2] => 113
[[1,1,1,1,1],[3,3]] => [5,2] => 113
[[1,1,1,1,2],[2,3]] => [5,2] => 113
[[1,1,1,1,3],[2,2]] => [5,2] => 113
[[1,1,1,1,2],[3,3]] => [5,2] => 113
[[1,1,1,1,3],[2,3]] => [5,2] => 113
[[1,1,1,1,3],[3,3]] => [5,2] => 113
[[1,1,1,2,2],[2,3]] => [5,2] => 113
[[1,1,1,2,3],[2,2]] => [5,2] => 113
[[1,1,1,2,2],[3,3]] => [5,2] => 113
[[1,1,1,2,3],[2,3]] => [5,2] => 113
[[1,1,1,3,3],[2,2]] => [5,2] => 113
[[1,1,1,2,3],[3,3]] => [5,2] => 113
[[1,1,1,3,3],[2,3]] => [5,2] => 113
[[1,1,1,3,3],[3,3]] => [5,2] => 113
[[1,1,2,2,2],[2,3]] => [5,2] => 113
[[1,1,2,2,3],[2,2]] => [5,2] => 113
[[1,1,2,2,2],[3,3]] => [5,2] => 113
[[1,1,2,2,3],[2,3]] => [5,2] => 113
[[1,1,2,3,3],[2,2]] => [5,2] => 113
[[1,1,2,2,3],[3,3]] => [5,2] => 113
[[1,1,2,3,3],[2,3]] => [5,2] => 113
[[1,1,3,3,3],[2,2]] => [5,2] => 113
[[1,1,2,3,3],[3,3]] => [5,2] => 113
[[1,1,3,3,3],[2,3]] => [5,2] => 113
[[1,1,3,3,3],[3,3]] => [5,2] => 113
[[1,2,2,2,2],[2,3]] => [5,2] => 113
[[1,2,2,2,2],[3,3]] => [5,2] => 113
[[1,2,2,2,3],[2,3]] => [5,2] => 113
[[1,2,2,2,3],[3,3]] => [5,2] => 113
[[1,2,2,3,3],[2,3]] => [5,2] => 113
[[1,2,2,3,3],[3,3]] => [5,2] => 113
[[1,2,3,3,3],[2,3]] => [5,2] => 113
[[1,2,3,3,3],[3,3]] => [5,2] => 113
[[2,2,2,2,2],[3,3]] => [5,2] => 113
[[2,2,2,2,3],[3,3]] => [5,2] => 113
[[2,2,2,3,3],[3,3]] => [5,2] => 113
[[2,2,3,3,3],[3,3]] => [5,2] => 113
[[1,1,1,1,1],[2],[3]] => [5,1,1] => 202
[[1,1,1,1,2],[2],[3]] => [5,1,1] => 202
[[1,1,1,1,3],[2],[3]] => [5,1,1] => 202
[[1,1,1,2,2],[2],[3]] => [5,1,1] => 202
[[1,1,1,2,3],[2],[3]] => [5,1,1] => 202
[[1,1,1,3,3],[2],[3]] => [5,1,1] => 202
[[1,1,2,2,2],[2],[3]] => [5,1,1] => 202
[[1,1,2,2,3],[2],[3]] => [5,1,1] => 202
[[1,1,2,3,3],[2],[3]] => [5,1,1] => 202
[[1,1,3,3,3],[2],[3]] => [5,1,1] => 202
[[1,2,2,2,2],[2],[3]] => [5,1,1] => 202
[[1,2,2,2,3],[2],[3]] => [5,1,1] => 202
[[1,2,2,3,3],[2],[3]] => [5,1,1] => 202
[[1,2,3,3,3],[2],[3]] => [5,1,1] => 202
[[1,3,3,3,3],[2],[3]] => [5,1,1] => 202
[[1,1,1,1],[2,2,3]] => [4,3] => 160
[[1,1,1,1],[2,3,3]] => [4,3] => 160
[[1,1,1,1],[3,3,3]] => [4,3] => 160
[[1,1,1,2],[2,2,3]] => [4,3] => 160
[[1,1,1,3],[2,2,2]] => [4,3] => 160
[[1,1,1,2],[2,3,3]] => [4,3] => 160
[[1,1,1,3],[2,2,3]] => [4,3] => 160
[[1,1,1,2],[3,3,3]] => [4,3] => 160
[[1,1,1,3],[2,3,3]] => [4,3] => 160
[[1,1,1,3],[3,3,3]] => [4,3] => 160
[[1,1,2,2],[2,2,3]] => [4,3] => 160
[[1,1,2,2],[2,3,3]] => [4,3] => 160
[[1,1,2,3],[2,2,3]] => [4,3] => 160
[[1,1,2,2],[3,3,3]] => [4,3] => 160
[[1,1,2,3],[2,3,3]] => [4,3] => 160
[[1,1,2,3],[3,3,3]] => [4,3] => 160
[[1,2,2,2],[2,3,3]] => [4,3] => 160
[[1,2,2,2],[3,3,3]] => [4,3] => 160
[[1,2,2,3],[2,3,3]] => [4,3] => 160
[[1,2,2,3],[3,3,3]] => [4,3] => 160
[[2,2,2,2],[3,3,3]] => [4,3] => 160
[[2,2,2,3],[3,3,3]] => [4,3] => 160
[[1,1,1,1],[2,2],[3]] => [4,2,1] => 398
[[1,1,1,1],[2,3],[3]] => [4,2,1] => 398
[[1,1,1,2],[2,2],[3]] => [4,2,1] => 398
[[1,1,1,2],[2,3],[3]] => [4,2,1] => 398
[[1,1,1,3],[2,2],[3]] => [4,2,1] => 398
[[1,1,1,3],[2,3],[3]] => [4,2,1] => 398
[[1,1,2,2],[2,2],[3]] => [4,2,1] => 398
[[1,1,2,2],[2,3],[3]] => [4,2,1] => 398
[[1,1,2,3],[2,2],[3]] => [4,2,1] => 398
[[1,1,2,3],[2,3],[3]] => [4,2,1] => 398
[[1,1,3,3],[2,2],[3]] => [4,2,1] => 398
[[1,1,3,3],[2,3],[3]] => [4,2,1] => 398
[[1,2,2,2],[2,3],[3]] => [4,2,1] => 398
[[1,2,2,3],[2,3],[3]] => [4,2,1] => 398
[[1,2,3,3],[2,3],[3]] => [4,2,1] => 398
[[1,1,1],[2,2,2],[3]] => [3,3,1] => 493
[[1,1,1],[2,2,3],[3]] => [3,3,1] => 493
[[1,1,1],[2,3,3],[3]] => [3,3,1] => 493
[[1,1,2],[2,2,3],[3]] => [3,3,1] => 493
[[1,1,2],[2,3,3],[3]] => [3,3,1] => 493
[[1,2,2],[2,3,3],[3]] => [3,3,1] => 493
[[1,1,1],[2,2],[3,3]] => [3,2,2] => 685
[[1,1,2],[2,2],[3,3]] => [3,2,2] => 685
[[1,1,3],[2,2],[3,3]] => [3,2,2] => 685
[[1,1,1,1,1,1,1,2]] => [8] => 22
[[1,1,1,1,1,1,2,2]] => [8] => 22
[[1,1,1,1,1,2,2,2]] => [8] => 22
[[1,1,1,1,2,2,2,2]] => [8] => 22
[[1,1,1,2,2,2,2,2]] => [8] => 22
[[1,1,2,2,2,2,2,2]] => [8] => 22
[[1,2,2,2,2,2,2,2]] => [8] => 22
[[2,2,2,2,2,2,2,2]] => [8] => 22
[[1,1,1,1,1,1,1],[2]] => [7,1] => 86
[[1,1,1,1,1,1,2],[2]] => [7,1] => 86
[[1,1,1,1,1,2,2],[2]] => [7,1] => 86
[[1,1,1,1,2,2,2],[2]] => [7,1] => 86
[[1,1,1,2,2,2,2],[2]] => [7,1] => 86
[[1,1,2,2,2,2,2],[2]] => [7,1] => 86
[[1,2,2,2,2,2,2],[2]] => [7,1] => 86
[[1,1,1,1,1,1],[2,2]] => [6,2] => 199
[[1,1,1,1,1,2],[2,2]] => [6,2] => 199
[[1,1,1,1,2,2],[2,2]] => [6,2] => 199
[[1,1,1,2,2,2],[2,2]] => [6,2] => 199
[[1,1,2,2,2,2],[2,2]] => [6,2] => 199
[[1,1,1,1,1],[2,2,2]] => [5,3] => 318
[[1,1,1,1,2],[2,2,2]] => [5,3] => 318
[[1,1,1,2,2],[2,2,2]] => [5,3] => 318
[[1,1,1,1],[2,2,2,2]] => [4,4] => 371
[[1]] => [1] => 1
[[1,1,1,1],[2,2,2],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,2,2],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,1,1],[2,2,3],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,2,3],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,1,3],[2,2,3],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,2,2],[2,2,3],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,2,3],[2,2,3],[3,3],[4]] => [4,3,2,1] => 47494
[[1,1,1,1],[2,2,2],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,2,2],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,1],[2,2,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,2,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,3],[2,2,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,2],[2,2,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,3],[2,2,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,1],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,3],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,4],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,2],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,3],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,4],[2,2,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,1],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,2],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,1],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,2],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,1,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,2],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,2,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,1,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,2,2],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,2,3],[2,3,3],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,2,2],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,2,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,2,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,3,3],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[1,2,3,4],[2,3,4],[3,4],[4]] => [4,3,2,1] => 47494
[[2]] => [1] => 1
[[1,1]] => [2] => 2
[[3]] => [1] => 1
[[1,1,1]] => [3] => 3
[[4]] => [1] => 1
[[1,1,1,1]] => [4] => 5
[[5]] => [1] => 1
[[1,1,1,1,1]] => [5] => 7
[[6]] => [1] => 1
[[1,2,3,4,5,6]] => [6] => 11
[[1,2,3,4,5],[6]] => [5,1] => 35
[[1,2,3,4,6],[5]] => [5,1] => 35
[[1,2,3,4],[5],[6]] => [4,1,1] => 114
[[1,2,3,5,6],[4]] => [5,1] => 35
[[1,2,3,5],[4,6]] => [4,2] => 65
[[1,2,3,5],[4],[6]] => [4,1,1] => 114
[[1,2,3,4],[5,6]] => [4,2] => 65
[[1,2,3,6],[4],[5]] => [4,1,1] => 114
[[1,2,3],[4],[5],[6]] => [3,1,1,1] => 344
[[1,2,4,5,6],[3]] => [5,1] => 35
[[1,2,4,5],[3,6]] => [4,2] => 65
[[1,2,4,6],[3,5]] => [4,2] => 65
[[1,2,4],[3,5],[6]] => [3,2,1] => 191
[[1,2,4,5],[3],[6]] => [4,1,1] => 114
[[1,2,4,6],[3],[5]] => [4,1,1] => 114
[[1,2,4],[3],[5],[6]] => [3,1,1,1] => 344
[[1,2,3,6],[4,5]] => [4,2] => 65
[[1,2,3],[4,5],[6]] => [3,2,1] => 191
[[1,2,5,6],[3],[4]] => [4,1,1] => 114
[[1,2,5],[3,6],[4]] => [3,2,1] => 191
[[1,2,5],[3],[4],[6]] => [3,1,1,1] => 344
[[1,2,3],[4,6],[5]] => [3,2,1] => 191
[[1,2,4],[3,6],[5]] => [3,2,1] => 191
[[1,2,6],[3],[4],[5]] => [3,1,1,1] => 344
[[1,2],[3],[4],[5],[6]] => [2,1,1,1,1] => 870
[[1,3,4,5,6],[2]] => [5,1] => 35
[[1,3,4,5],[2,6]] => [4,2] => 65
[[1,3,4,6],[2,5]] => [4,2] => 65
[[1,3,4],[2,5],[6]] => [3,2,1] => 191
[[1,3,5,6],[2,4]] => [4,2] => 65
[[1,3,5],[2,4,6]] => [3,3] => 79
[[1,3,5],[2,4],[6]] => [3,2,1] => 191
[[1,3,4],[2,5,6]] => [3,3] => 79
[[1,3,6],[2,4],[5]] => [3,2,1] => 191
[[1,3],[2,4],[5],[6]] => [2,2,1,1] => 476
[[1,3,4,5],[2],[6]] => [4,1,1] => 114
[[1,3,4,6],[2],[5]] => [4,1,1] => 114
[[1,3,4],[2],[5],[6]] => [3,1,1,1] => 344
[[1,3,5,6],[2],[4]] => [4,1,1] => 114
[[1,3,5],[2,6],[4]] => [3,2,1] => 191
[[1,3,5],[2],[4],[6]] => [3,1,1,1] => 344
[[1,3,4],[2,6],[5]] => [3,2,1] => 191
[[1,3,6],[2],[4],[5]] => [3,1,1,1] => 344
[[1,3],[2],[4],[5],[6]] => [2,1,1,1,1] => 870
[[1,2,5,6],[3,4]] => [4,2] => 65
[[1,2,5],[3,4,6]] => [3,3] => 79
[[1,2,5],[3,4],[6]] => [3,2,1] => 191
[[1,2,4],[3,5,6]] => [3,3] => 79
[[1,2,6],[3,4],[5]] => [3,2,1] => 191
[[1,2],[3,4],[5],[6]] => [2,2,1,1] => 476
[[1,4,5,6],[2],[3]] => [4,1,1] => 114
[[1,4,5],[2,6],[3]] => [3,2,1] => 191
[[1,4,6],[2,5],[3]] => [3,2,1] => 191
[[1,4],[2,5],[3,6]] => [2,2,2] => 263
[[1,4],[2,5],[3],[6]] => [2,2,1,1] => 476
[[1,4,5],[2],[3],[6]] => [3,1,1,1] => 344
[[1,4,6],[2],[3],[5]] => [3,1,1,1] => 344
[[1,4],[2],[3],[5],[6]] => [2,1,1,1,1] => 870
[[1,2,3],[4,5,6]] => [3,3] => 79
[[1,2,6],[3,5],[4]] => [3,2,1] => 191
[[1,2],[3,5],[4],[6]] => [2,2,1,1] => 476
[[1,3,6],[2,5],[4]] => [3,2,1] => 191
[[1,3],[2,5],[4,6]] => [2,2,2] => 263
[[1,3],[2,5],[4],[6]] => [2,2,1,1] => 476
[[1,2],[3,5],[4,6]] => [2,2,2] => 263
[[1,5,6],[2],[3],[4]] => [3,1,1,1] => 344
[[1,5],[2,6],[3],[4]] => [2,2,1,1] => 476
[[1,5],[2],[3],[4],[6]] => [2,1,1,1,1] => 870
[[1,2],[3,6],[4],[5]] => [2,2,1,1] => 476
[[1,3],[2,4],[5,6]] => [2,2,2] => 263
[[1,3],[2,6],[4],[5]] => [2,2,1,1] => 476
[[1,2],[3,4],[5,6]] => [2,2,2] => 263
[[1,4],[2,6],[3],[5]] => [2,2,1,1] => 476
[[1,6],[2],[3],[4],[5]] => [2,1,1,1,1] => 870
[[1],[2],[3],[4],[5],[6]] => [1,1,1,1,1,1] => 1602
[[1,1,1,1,2,2,2],[3,3],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,2,2],[3,3],[4]] => [7,2,1] => 2607
[[1,1,1,1,2,2,3],[3,3],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,2,3],[3,3],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,3,3],[3,3],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,2,3],[3,3],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,3,3],[3,3],[4]] => [7,2,1] => 2607
[[1,1,1,1,2,2,2],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,2,2],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,1,2,2,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,2,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,3],[3,3,4],[4]] => [6,3,1] => 4849
[[1,1,2,2,2,2,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,3],[3,3,4],[4]] => [6,3,1] => 4849
[[1,1,1,1,2,2,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,2,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,4,4],[3,3],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,4,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,2,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,4,4],[3,3],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,4,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,1,2,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,3,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,3,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,1,2,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,2,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,3,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,1,2,3,4,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,2,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,3,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,2,3,4,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,3,3,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,1,2,3,3,4,4],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,2,2,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,2,3,3,3],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,2,2,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,2,3,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,2,3,4,4],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,3,3,3,4],[3,4],[4]] => [7,2,1] => 2607
[[1,2,2,3,3,4,4],[3,4],[4]] => [7,2,1] => 2607
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
$F_{(2, 2)} = 2\ q^{2} + q^{3}$
$F_{(2, 3)} = 3\ q^{2} + 2\ q^{3}$
$F_{(3, 2)} = 3\ q^{3} + 2\ q^{6}$
$F_{(2, 4)} = 4\ q^{2} + 3\ q^{3}$
$F_{(3, 3)} = 6\ q^{3} + 6\ q^{6} + q^{10}$
$F_{(4, 2)} = 4\ q^{5} + 3\ q^{12} + q^{16}$
$F_{(2, 5)} = 5\ q^{2} + 4\ q^{3}$
$F_{(3, 4)} = 10\ q^{3} + 12\ q^{6} + 3\ q^{10}$
$F_{(4, 3)} = 10\ q^{5} + 12\ q^{12} + 5\ q^{16} + 3\ q^{27}$
$F_{(5, 2)} = 5\ q^{7} + 4\ q^{20} + 2\ q^{32}$
$F_{(2, 6)} = 6\ q^{2} + 5\ q^{3}$
$F_{(3, 5)} = 15\ q^{3} + 20\ q^{6} + 6\ q^{10}$
$F_{(4, 4)} = 20\ q^{5} + 30\ q^{12} + 14\ q^{16} + 12\ q^{27} + q^{47}$
$F_{(5, 3)} = 15\ q^{7} + 20\ q^{20} + 13\ q^{32} + 6\ q^{56} + 3\ q^{76}$
$F_{(6, 2)} = 6\ q^{11} + 5\ q^{35} + 3\ q^{65} + q^{79}$
$F_{(2, 7)} = 7\ q^{2} + 6\ q^{3}$
$F_{(3, 6)} = 21\ q^{3} + 30\ q^{6} + 10\ q^{10}$
$F_{(4, 5)} = 35\ q^{5} + 60\ q^{12} + 30\ q^{16} + 30\ q^{27} + 4\ q^{47}$
$F_{(5, 4)} = 35\ q^{7} + 60\ q^{20} + 45\ q^{32} + 30\ q^{56} + 17\ q^{76} + 4\ q^{136}$
$F_{(6, 3)} = 21\ q^{11} + 30\ q^{35} + 24\ q^{65} + 9\ q^{79} + 10\ q^{114} + 8\ q^{191} + q^{263}$
$F_{(7, 2)} = 7\ q^{15} + 6\ q^{54} + 4\ q^{113} + 2\ q^{160}$
$F_{(2, 8)} = 8\ q^{2} + 7\ q^{3}$
$F_{(3, 7)} = 28\ q^{3} + 42\ q^{6} + 15\ q^{10}$
$F_{(4, 6)} = 56\ q^{5} + 105\ q^{12} + 55\ q^{16} + 60\ q^{27} + 10\ q^{47}$
$F_{(5, 5)} = 70\ q^{7} + 140\ q^{20} + 115\ q^{32} + 90\ q^{56} + 55\ q^{76} + 20\ q^{136} + q^{246}$
$F_{(6, 4)} = 56\ q^{11} + 105\ q^{35} + 99\ q^{65} + 40\ q^{79} + 60\ q^{114} + 56\ q^{191} + 9\ q^{263} + 10\ q^{344} + 6\ q^{476}$
$F_{(7, 3)} = 28\ q^{15} + 42\ q^{54} + 38\ q^{113} + 22\ q^{160} + 15\ q^{202} + 15\ q^{398} + 6\ q^{493} + 3\ q^{685}$
$F_{(8, 2)} = 8\ q^{22} + 7\ q^{86} + 5\ q^{199} + 3\ q^{318} + q^{371}$
Description
The sum of the entries in the column specified by the partition of the change of basis matrix from complete homogeneous symmetric functions to monomial symmetric functions.
For example, $h_{11} = 2m_{11} + m_2$, so the statistic on the partition $11$ is 3.
For example, $h_{11} = 2m_{11} + m_2$, so the statistic on the partition $11$ is 3.
Map
shape
Description
Return the shape of a tableau.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!