Identifier
- St000814: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>2
[3]=>1
[2,1]=>2
[1,1,1]=>4
[4]=>1
[3,1]=>2
[2,2]=>3
[2,1,1]=>5
[1,1,1,1]=>10
[5]=>1
[4,1]=>2
[3,2]=>3
[3,1,1]=>5
[2,2,1]=>7
[2,1,1,1]=>13
[1,1,1,1,1]=>26
[6]=>1
[5,1]=>2
[4,2]=>3
[4,1,1]=>5
[3,3]=>4
[3,2,1]=>8
[3,1,1,1]=>14
[2,2,2]=>11
[2,2,1,1]=>20
[2,1,1,1,1]=>38
[1,1,1,1,1,1]=>76
[7]=>1
[6,1]=>2
[5,2]=>3
[5,1,1]=>5
[4,3]=>4
[4,2,1]=>8
[4,1,1,1]=>14
[3,3,1]=>10
[3,2,2]=>13
[3,2,1,1]=>23
[3,1,1,1,1]=>42
[2,2,2,1]=>32
[2,2,1,1,1]=>60
[2,1,1,1,1,1]=>116
[1,1,1,1,1,1,1]=>232
[8]=>1
[7,1]=>2
[6,2]=>3
[6,1,1]=>5
[5,3]=>4
[5,2,1]=>8
[5,1,1,1]=>14
[4,4]=>5
[4,3,1]=>11
[4,2,2]=>14
[4,2,1,1]=>24
[4,1,1,1,1]=>43
[3,3,2]=>17
[3,3,1,1]=>30
[3,2,2,1]=>40
[3,2,1,1,1]=>73
[3,1,1,1,1,1]=>136
[2,2,2,2]=>56
[2,2,2,1,1]=>103
[2,2,1,1,1,1]=>196
[2,1,1,1,1,1,1]=>382
[1,1,1,1,1,1,1,1]=>764
[9]=>1
[8,1]=>2
[7,2]=>3
[7,1,1]=>5
[6,3]=>4
[6,2,1]=>8
[6,1,1,1]=>14
[5,4]=>5
[5,3,1]=>11
[5,2,2]=>14
[5,2,1,1]=>24
[5,1,1,1,1]=>43
[4,4,1]=>13
[4,3,2]=>19
[4,3,1,1]=>33
[4,2,2,1]=>43
[4,2,1,1,1]=>77
[4,1,1,1,1,1]=>141
[3,3,3]=>23
[3,3,2,1]=>53
[3,3,1,1,1]=>96
[3,2,2,2]=>72
[3,2,2,1,1]=>131
[3,2,1,1,1,1]=>244
[3,1,1,1,1,1,1]=>462
[2,2,2,2,1]=>184
[2,2,2,1,1,1]=>347
[2,2,1,1,1,1,1]=>668
[2,1,1,1,1,1,1,1]=>1310
[1,1,1,1,1,1,1,1,1]=>2620
[10]=>1
[9,1]=>2
[8,2]=>3
[8,1,1]=>5
[7,3]=>4
[7,2,1]=>8
[7,1,1,1]=>14
[6,4]=>5
[6,3,1]=>11
[6,2,2]=>14
[6,2,1,1]=>24
[6,1,1,1,1]=>43
[5,5]=>6
[5,4,1]=>14
[5,3,2]=>20
[5,3,1,1]=>34
[5,2,2,1]=>44
[5,2,1,1,1]=>78
[5,1,1,1,1,1]=>142
[4,4,2]=>23
[4,4,1,1]=>40
[4,3,3]=>27
[4,3,2,1]=>61
[4,3,1,1,1]=>109
[4,2,2,2]=>81
[4,2,2,1,1]=>145
[4,2,1,1,1,1]=>265
[4,1,1,1,1,1,1]=>492
[3,3,3,1]=>74
[3,3,2,2]=>100
[3,3,2,1,1]=>180
[3,3,1,1,1,1]=>332
[3,2,2,2,1]=>248
[3,2,2,1,1,1]=>460
[3,2,1,1,1,1,1]=>868
[3,1,1,1,1,1,1,1]=>1660
[2,2,2,2,2]=>348
[2,2,2,2,1,1]=>652
[2,2,2,1,1,1,1]=>1244
[2,2,1,1,1,1,1,1]=>2412
[2,1,1,1,1,1,1,1,1]=>4748
[1,1,1,1,1,1,1,1,1,1]=>9496
[11]=>1
[10,1]=>2
[9,2]=>3
[9,1,1]=>5
[8,3]=>4
[8,2,1]=>8
[8,1,1,1]=>14
[7,4]=>5
[7,3,1]=>11
[7,2,2]=>14
[7,2,1,1]=>24
[7,1,1,1,1]=>43
[6,5]=>6
[6,4,1]=>14
[6,3,2]=>20
[6,3,1,1]=>34
[6,2,2,1]=>44
[6,2,1,1,1]=>78
[6,1,1,1,1,1]=>142
[5,5,1]=>16
[5,4,2]=>25
[5,4,1,1]=>43
[5,3,3]=>29
[5,3,2,1]=>64
[5,3,1,1,1]=>113
[5,2,2,2]=>84
[5,2,2,1,1]=>149
[5,2,1,1,1,1]=>270
[5,1,1,1,1,1,1]=>498
[4,4,3]=>33
[4,4,2,1]=>74
[4,4,1,1,1]=>132
[4,3,3,1]=>88
[4,3,2,2]=>117
[4,3,2,1,1]=>209
[4,3,1,1,1,1]=>381
[4,2,2,2,1]=>282
[4,2,2,1,1,1]=>516
[4,2,1,1,1,1,1]=>958
[4,1,1,1,1,1,1,1]=>1800
[3,3,3,2]=>143
[3,3,3,1,1]=>256
[3,3,2,2,1]=>350
[3,3,2,1,1,1]=>644
[3,3,1,1,1,1,1]=>1204
[3,2,2,2,2]=>484
[3,2,2,2,1,1]=>897
[3,2,2,1,1,1,1]=>1688
[3,2,1,1,1,1,1,1]=>3218
[3,1,1,1,1,1,1,1,1]=>6204
[2,2,2,2,2,1]=>1268
[2,2,2,2,1,1,1]=>2408
[2,2,2,1,1,1,1,1]=>4636
[2,2,1,1,1,1,1,1,1]=>9040
[2,1,1,1,1,1,1,1,1,1]=>17848
[1,1,1,1,1,1,1,1,1,1,1]=>35696
[12]=>1
[11,1]=>2
[10,2]=>3
[10,1,1]=>5
[9,3]=>4
[9,2,1]=>8
[9,1,1,1]=>14
[8,4]=>5
[8,3,1]=>11
[8,2,2]=>14
[8,2,1,1]=>24
[8,1,1,1,1]=>43
[7,5]=>6
[7,4,1]=>14
[7,3,2]=>20
[7,3,1,1]=>34
[7,2,2,1]=>44
[7,2,1,1,1]=>78
[7,1,1,1,1,1]=>142
[6,6]=>7
[6,5,1]=>17
[6,4,2]=>26
[6,4,1,1]=>44
[6,3,3]=>30
[6,3,2,1]=>65
[6,3,1,1,1]=>114
[6,2,2,2]=>85
[6,2,2,1,1]=>150
[6,2,1,1,1,1]=>271
[6,1,1,1,1,1,1]=>499
[5,5,2]=>29
[5,5,1,1]=>50
[5,4,3]=>37
[5,4,2,1]=>82
[5,4,1,1,1]=>145
[5,3,3,1]=>96
[5,3,2,2]=>126
[5,3,2,1,1]=>223
[5,3,1,1,1,1]=>402
[5,2,2,2,1]=>297
[5,2,2,1,1,1]=>538
[5,2,1,1,1,1,1]=>989
[5,1,1,1,1,1,1,1]=>1842
[4,4,4]=>42
[4,4,3,1]=>110
[4,4,2,2]=>146
[4,4,2,1,1]=>259
[4,4,1,1,1,1]=>470
[4,3,3,2]=>175
[4,3,3,1,1]=>311
[4,3,2,2,1]=>420
[4,3,2,1,1,1]=>765
[4,3,1,1,1,1,1]=>1414
[4,2,2,2,2]=>572
[4,2,2,2,1,1]=>1046
[4,2,2,1,1,1,1]=>1941
[4,2,1,1,1,1,1,1]=>3643
[4,1,1,1,1,1,1,1,1]=>6904
[3,3,3,3]=>214
[3,3,3,2,1]=>517
[3,3,3,1,1,1]=>944
[3,3,2,2,2]=>710
[3,3,2,2,1,1]=>1306
[3,3,2,1,1,1,1]=>2436
[3,3,1,1,1,1,1,1]=>4600
[3,2,2,2,2,1]=>1824
[3,2,2,2,1,1,1]=>3425
[3,2,2,1,1,1,1,1]=>6508
[3,2,1,1,1,1,1,1,1]=>12498
[3,1,1,1,1,1,1,1,1,1]=>24232
[2,2,2,2,2,2]=>2578
[2,2,2,2,2,1,1]=>4876
[2,2,2,2,1,1,1,1]=>9340
[2,2,2,1,1,1,1,1,1]=>18092
[2,2,1,1,1,1,1,1,1,1]=>35420
[2,1,1,1,1,1,1,1,1,1,1]=>70076
[1,1,1,1,1,1,1,1,1,1,1,1]=>140152
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The sum of the entries in the column specified by the partition of the change of basis matrix from elementary symmetric functions to Schur symmetric functions.
For example, $e_{22} = s_{1111} + s_{211} + s_{22}$, so the statistic on the partition $22$ is $3$.
For example, $e_{22} = s_{1111} + s_{211} + s_{22}$, so the statistic on the partition $22$ is $3$.
References
[1] a(n)= sum of entries of n-th Kostka matrix for the partitions of n. OEIS:A178718
Code
def statistic(mu): s = SymmetricFunctions(ZZ).s() e = SymmetricFunctions(ZZ).e() return sum(coeff for _, coeff in s(e(mu)))
Created
May 20, 2017 at 17:44 by Martin Rubey
Updated
Oct 31, 2017 at 08:10 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!