Identifier
- St000815: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>2
[1,1]=>1
[3]=>3
[2,1]=>3
[1,1,1]=>1
[4]=>5
[3,1]=>7
[2,2]=>4
[2,1,1]=>4
[1,1,1,1]=>1
[5]=>7
[4,1]=>13
[3,2]=>12
[3,1,1]=>11
[2,2,1]=>8
[2,1,1,1]=>5
[1,1,1,1,1]=>1
[6]=>11
[5,1]=>24
[4,2]=>30
[4,1,1]=>25
[3,3]=>14
[3,2,1]=>33
[3,1,1,1]=>16
[2,2,2]=>9
[2,2,1,1]=>13
[2,1,1,1,1]=>6
[1,1,1,1,1,1]=>1
[7]=>15
[6,1]=>39
[5,2]=>59
[5,1,1]=>50
[4,3]=>47
[4,2,1]=>90
[4,1,1,1]=>41
[3,3,1]=>48
[3,2,2]=>43
[3,2,1,1]=>62
[3,1,1,1,1]=>22
[2,2,2,1]=>22
[2,2,1,1,1]=>19
[2,1,1,1,1,1]=>7
[1,1,1,1,1,1,1]=>1
[8]=>22
[7,1]=>64
[6,2]=>113
[6,1,1]=>94
[5,3]=>119
[5,2,1]=>211
[5,1,1,1]=>92
[4,4]=>53
[4,3,1]=>195
[4,2,2]=>141
[4,2,1,1]=>196
[4,1,1,1,1]=>63
[3,3,2]=>95
[3,3,1,1]=>112
[3,2,2,1]=>130
[3,2,1,1,1]=>103
[3,1,1,1,1,1]=>29
[2,2,2,2]=>23
[2,2,2,1,1]=>41
[2,2,1,1,1,1]=>26
[2,1,1,1,1,1,1]=>8
[1,1,1,1,1,1,1,1]=>1
[9]=>30
[8,1]=>98
[7,2]=>195
[7,1,1]=>164
[6,3]=>250
[6,2,1]=>432
[6,1,1,1]=>187
[5,4]=>183
[5,3,1]=>540
[5,2,2]=>361
[5,2,1,1]=>502
[5,1,1,1,1]=>155
[4,4,1]=>254
[4,3,2]=>440
[4,3,1,1]=>506
[4,2,2,1]=>470
[4,2,1,1,1]=>362
[4,1,1,1,1,1]=>92
[3,3,3]=>97
[3,3,2,1]=>339
[3,3,1,1,1]=>215
[3,2,2,2]=>154
[3,2,2,1,1]=>274
[3,2,1,1,1,1]=>158
[3,1,1,1,1,1,1]=>37
[2,2,2,2,1]=>64
[2,2,2,1,1,1]=>67
[2,2,1,1,1,1,1]=>34
[2,1,1,1,1,1,1,1]=>9
[1,1,1,1,1,1,1,1,1]=>1
[10]=>42
[9,1]=>150
[8,2]=>331
[8,1,1]=>278
[7,3]=>490
[7,2,1]=>835
[7,1,1,1]=>357
[6,4]=>472
[6,3,1]=>1280
[6,2,2]=>829
[6,2,1,1]=>1142
[6,1,1,1,1]=>343
[5,5]=>198
[5,4,1]=>1020
[5,3,2]=>1390
[5,3,1,1]=>1576
[5,2,2,1]=>1359
[5,2,1,1,1]=>1023
[5,1,1,1,1,1]=>247
[4,4,2]=>719
[4,4,1,1]=>773
[4,3,3]=>552
[4,3,2,1]=>1785
[4,3,1,1,1]=>1088
[4,2,2,2]=>636
[4,2,2,1,1]=>1112
[4,2,1,1,1,1]=>612
[4,1,1,1,1,1,1]=>129
[3,3,3,1]=>442
[3,3,2,2]=>500
[3,3,2,1,1]=>833
[3,3,1,1,1,1]=>373
[3,2,2,2,1]=>496
[3,2,2,1,1,1]=>499
[3,2,1,1,1,1,1]=>229
[3,1,1,1,1,1,1,1]=>46
[2,2,2,2,2]=>65
[2,2,2,2,1,1]=>131
[2,2,2,1,1,1,1]=>101
[2,2,1,1,1,1,1,1]=>43
[2,1,1,1,1,1,1,1,1]=>10
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>56
[10,1]=>219
[9,2]=>528
[9,1,1]=>448
[8,3]=>880
[8,2,1]=>1498
[8,1,1,1]=>642
[7,4]=>1018
[7,3,1]=>2682
[7,2,2]=>1707
[7,2,1,1]=>2358
[7,1,1,1,1]=>701
[6,5]=>704
[6,4,1]=>2841
[6,3,2]=>3568
[6,3,1,1]=>4034
[6,2,2,1]=>3359
[6,2,1,1,1]=>2512
[6,1,1,1,1,1]=>590
[5,5,1]=>1246
[5,4,2]=>3182
[5,4,1,1]=>3396
[5,3,3]=>1970
[5,3,2,1]=>6154
[5,3,1,1,1]=>3693
[5,2,2,2]=>2008
[5,2,2,1,1]=>3500
[5,2,1,1,1,1]=>1882
[5,1,1,1,1,1,1]=>376
[4,4,3]=>1287
[4,4,2,1]=>3298
[4,4,1,1,1]=>1864
[4,3,3,1]=>2795
[4,3,2,2]=>2936
[4,3,2,1,1]=>4826
[4,3,1,1,1,1]=>2073
[4,2,2,2,1]=>2248
[4,2,2,1,1,1]=>2223
[4,2,1,1,1,1,1]=>970
[4,1,1,1,1,1,1,1]=>175
[3,3,3,2]=>946
[3,3,3,1,1]=>1277
[3,3,2,2,1]=>1832
[3,3,2,1,1,1]=>1705
[3,3,1,1,1,1,1]=>602
[3,2,2,2,2]=>562
[3,2,2,2,1,1]=>1126
[3,2,2,1,1,1,1]=>829
[3,2,1,1,1,1,1,1]=>318
[3,1,1,1,1,1,1,1,1]=>56
[2,2,2,2,2,1]=>196
[2,2,2,2,1,1,1]=>232
[2,2,2,1,1,1,1,1]=>144
[2,2,1,1,1,1,1,1,1]=>53
[2,1,1,1,1,1,1,1,1,1]=>11
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>77
[11,1]=>322
[10,2]=>838
[10,1,1]=>711
[9,3]=>1539
[9,2,1]=>2608
[9,1,1,1]=>1113
[8,4]=>2046
[8,3,1]=>5285
[8,2,2]=>3332
[8,2,1,1]=>4588
[8,1,1,1,1]=>1350
[7,5]=>1840
[7,4,1]=>6795
[7,3,2]=>8210
[7,3,1,1]=>9237
[7,2,2,1]=>7554
[7,2,1,1,1]=>5603
[7,1,1,1,1,1]=>1292
[6,6]=>751
[6,5,1]=>4962
[6,4,2]=>9862
[6,4,1,1]=>10440
[6,3,3]=>5673
[6,3,2,1]=>17371
[6,3,1,1,1]=>10298
[6,2,2,2]=>5442
[6,2,2,1,1]=>9428
[6,2,1,1,1,1]=>4989
[6,1,1,1,1,1,1]=>966
[5,5,2]=>4543
[5,5,1,1]=>4716
[5,4,3]=>6582
[5,4,2,1]=>16251
[5,4,1,1,1]=>9003
[5,3,3,1]=>11053
[5,3,2,2]=>11225
[5,3,2,1,1]=>18277
[5,3,1,1,1,1]=>7657
[5,2,2,2,1]=>7804
[5,2,2,1,1,1]=>7615
[5,2,1,1,1,1,1]=>3228
[5,1,1,1,1,1,1,1]=>551
[4,4,4]=>1314
[4,4,3,1]=>7466
[4,4,2,2]=>6303
[4,4,2,1,1]=>10042
[4,4,1,1,1,1]=>3942
[4,3,3,2]=>6738
[4,3,3,1,1]=>8944
[4,3,2,2,1]=>11906
[4,3,2,1,1,1]=>10843
[4,3,1,1,1,1,1]=>3645
[4,2,2,2,2]=>2827
[4,2,2,2,1,1]=>5607
[4,2,2,1,1,1,1]=>4022
[4,2,1,1,1,1,1,1]=>1463
[4,1,1,1,1,1,1,1,1]=>231
[3,3,3,3]=>953
[3,3,3,2,1]=>4073
[3,3,3,1,1,1]=>2987
[3,3,2,2,2]=>2405
[3,3,2,2,1,1]=>4672
[3,3,2,1,1,1,1]=>3136
[3,3,1,1,1,1,1,1]=>920
[3,2,2,2,2,1]=>1889
[3,2,2,2,1,1,1]=>2187
[3,2,2,1,1,1,1,1]=>1291
[3,2,1,1,1,1,1,1,1]=>427
[3,1,1,1,1,1,1,1,1,1]=>67
[2,2,2,2,2,2]=>197
[2,2,2,2,2,1,1]=>428
[2,2,2,2,1,1,1,1]=>376
[2,2,2,1,1,1,1,1,1]=>197
[2,2,1,1,1,1,1,1,1,1]=>64
[2,1,1,1,1,1,1,1,1,1,1]=>12
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of semistandard Young tableaux of partition weight of given shape.
The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
References
[1] a(n)= sum of entries of n-th Kostka matrix for the partitions of n. OEIS:A178718
Code
def statistic(mu): m = SymmetricFunctions(ZZ).m() s = SymmetricFunctions(ZZ).s() return sum(coeff for _, coeff in m(s(mu)))
Created
May 20, 2017 at 17:26 by Martin Rubey
Updated
May 20, 2017 at 22:43 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!