Identifier
-
Mp00037:
Graphs
—to partition of connected components⟶
Integer partitions
Mp00202: Integer partitions —first row removal⟶ Integer partitions
St000815: Integer partitions ⟶ ℤ
Values
([],3) => [1,1,1] => [1,1] => 1
([],4) => [1,1,1,1] => [1,1,1] => 1
([(2,3)],4) => [2,1,1] => [1,1] => 1
([(0,3),(1,2)],4) => [2,2] => [2] => 2
([],5) => [1,1,1,1,1] => [1,1,1,1] => 1
([(3,4)],5) => [2,1,1,1] => [1,1,1] => 1
([(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(1,4),(2,3)],5) => [2,2,1] => [2,1] => 3
([(0,1),(2,4),(3,4)],5) => [3,2] => [2] => 2
([(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => 1
([(0,1),(2,3),(2,4),(3,4)],5) => [3,2] => [2] => 2
([],6) => [1,1,1,1,1,1] => [1,1,1,1,1] => 1
([(4,5)],6) => [2,1,1,1,1] => [1,1,1,1] => 1
([(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
([(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,5),(3,4)],6) => [2,2,1,1] => [2,1,1] => 4
([(2,5),(3,4),(4,5)],6) => [4,1,1] => [1,1] => 1
([(1,2),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 3
([(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => 1
([(0,1),(2,5),(3,5),(4,5)],6) => [4,2] => [2] => 2
([(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,5),(2,4),(3,4)],6) => [3,3] => [3] => 3
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,5),(1,4),(2,3)],6) => [2,2,2] => [2,2] => 4
([(0,1),(2,5),(3,4),(4,5)],6) => [4,2] => [2] => 2
([(1,2),(3,4),(3,5),(4,5)],6) => [3,2,1] => [2,1] => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,2] => [2] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,3] => [3] => 3
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 2
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => 1
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => 3
([(0,1),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [4,2] => [2] => 2
([],7) => [1,1,1,1,1,1,1] => [1,1,1,1,1,1] => 1
([(5,6)],7) => [2,1,1,1,1,1] => [1,1,1,1,1] => 1
([(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
([(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,6),(4,5)],7) => [2,2,1,1,1] => [2,1,1,1] => 5
([(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,3),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 4
([(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => 1
([(2,6),(3,6),(4,5),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 3
([(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(1,6),(2,6),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 7
([(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [4,3] => [3] => 3
([(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,6),(2,5),(3,4)],7) => [2,2,2,1] => [2,2,1] => 8
([(2,6),(3,5),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(5,6)],7) => [4,2,1] => [2,1] => 3
([(0,3),(1,2),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 4
([(2,3),(4,5),(4,6),(5,6)],7) => [3,2,1,1] => [2,1,1] => 4
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [5,2] => [2] => 2
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 3
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,1,1] => [1,1] => 1
([(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(1,2),(3,5),(3,6),(4,5),(4,6)],7) => [4,2,1] => [2,1] => 3
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 3
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,3,1] => [3,1] => 7
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 2
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 3
([(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,2,1] => [2,1] => 3
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [4,3] => [3] => 3
([(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => 1
([(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => 1
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,3] => [3] => 3
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [4,3] => [3] => 3
([(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => 1
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,2,2] => [2,2] => 4
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5)],7) => [5,2] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [4,3] => [3] => 3
([(0,1),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3,1] => [3,1] => 7
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,2] => [2] => 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [4,3] => [3] => 3
>>> Load all 216 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of semistandard Young tableaux of partition weight of given shape.
The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
The weight of a semistandard Young tableaux is the sequence $(m_1, m_2,\dots)$, where $m_i$ is the number of occurrences of the number $i$ in the tableau. This statistic counts those tableaux whose weight is a weakly decreasing sequence.
Alternatively, this is the sum of the entries in the column specified by the partition of the change of basis matrix from Schur functions to monomial symmetric functions.
Map
to partition of connected components
Description
Return the partition of the sizes of the connected components of the graph.
Map
first row removal
Description
Removes the first entry of an integer partition
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!