Values
([],1) => 1
([],2) => 1
([(0,1)],2) => 2
([],3) => 1
([(1,2)],3) => 2
([(0,2),(1,2)],3) => 2
([(0,1),(0,2),(1,2)],3) => 3
([],4) => 1
([(2,3)],4) => 2
([(1,3),(2,3)],4) => 2
([(0,3),(1,3),(2,3)],4) => 2
([(0,3),(1,2)],4) => 2
([(0,3),(1,2),(2,3)],4) => 2
([(1,2),(1,3),(2,3)],4) => 3
([(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => 4
([],5) => 1
([(3,4)],5) => 2
([(2,4),(3,4)],5) => 2
([(1,4),(2,4),(3,4)],5) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => 2
([(1,4),(2,3)],5) => 2
([(1,4),(2,3),(3,4)],5) => 2
([(0,1),(2,4),(3,4)],5) => 2
([(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,4),(2,3),(3,4)],5) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,3),(2,3),(2,4)],5) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 5
([],6) => 1
([(4,5)],6) => 2
([(3,5),(4,5)],6) => 2
([(2,5),(3,5),(4,5)],6) => 2
([(1,5),(2,5),(3,5),(4,5)],6) => 2
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => 2
([(2,5),(3,4)],6) => 2
([(2,5),(3,4),(4,5)],6) => 2
([(1,2),(3,5),(4,5)],6) => 2
([(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,5),(3,4),(4,5)],6) => 2
([(0,1),(2,5),(3,5),(4,5)],6) => 2
([(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => 2
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,5),(2,4),(3,4)],6) => 2
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => 2
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => 2
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,4),(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,3)],6) => 2
([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(2,5),(3,4),(4,5)],6) => 2
([(1,2),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => 2
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => 3
>>> Load all 208 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The Hadwiger number of the graph.
Also known as clique contraction number, this is the size of the largest complete minor.
Also known as clique contraction number, this is the size of the largest complete minor.
References
Code
def statistic(G):
min_bound = G.chromatic_number()
if G.is_planar():
max_bound = 4
else:
max_bound = G.num_verts()
for k in range(min_bound, max_bound+1):
try:
G.minor(graphs.CompleteGraph(k))
except ValueError:
return k-1
return max_bound
Created
May 23, 2017 at 22:08 by Martin Rubey
Updated
May 24, 2017 at 08:46 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!