Identifier
Values
([],1) => ([],2) => 1
([],2) => ([],3) => 1
([(0,1)],2) => ([(1,2)],3) => 2
([],3) => ([],4) => 1
([(1,2)],3) => ([(2,3)],4) => 2
([(0,2),(1,2)],3) => ([(1,3),(2,3)],4) => 2
([(0,1),(0,2),(1,2)],3) => ([(1,2),(1,3),(2,3)],4) => 3
([],4) => ([],5) => 1
([(2,3)],4) => ([(3,4)],5) => 2
([(1,3),(2,3)],4) => ([(2,4),(3,4)],5) => 2
([(0,3),(1,3),(2,3)],4) => ([(1,4),(2,4),(3,4)],5) => 2
([(0,3),(1,2)],4) => ([(1,4),(2,3)],5) => 2
([(0,3),(1,2),(2,3)],4) => ([(1,4),(2,3),(3,4)],5) => 2
([(1,2),(1,3),(2,3)],4) => ([(2,3),(2,4),(3,4)],5) => 3
([(0,3),(1,2),(1,3),(2,3)],4) => ([(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,2),(0,3),(1,2),(1,3)],4) => ([(1,3),(1,4),(2,3),(2,4)],5) => 3
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 3
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => ([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => 4
([],5) => ([],6) => 1
([(3,4)],5) => ([(4,5)],6) => 2
([(2,4),(3,4)],5) => ([(3,5),(4,5)],6) => 2
([(1,4),(2,4),(3,4)],5) => ([(2,5),(3,5),(4,5)],6) => 2
([(0,4),(1,4),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,5),(4,5)],6) => 2
([(1,4),(2,3)],5) => ([(2,5),(3,4)],6) => 2
([(1,4),(2,3),(3,4)],5) => ([(2,5),(3,4),(4,5)],6) => 2
([(0,1),(2,4),(3,4)],5) => ([(1,2),(3,5),(4,5)],6) => 2
([(2,3),(2,4),(3,4)],5) => ([(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,4),(2,3),(3,4)],5) => ([(1,5),(2,5),(3,4),(4,5)],6) => 2
([(1,4),(2,3),(2,4),(3,4)],5) => ([(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(1,3),(1,4),(2,3),(2,4)],5) => ([(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => 3
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => 3
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,3),(2,3),(2,4)],5) => ([(1,5),(2,4),(3,4),(3,5)],6) => 2
([(0,1),(2,3),(2,4),(3,4)],5) => ([(1,2),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => 3
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => 3
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => 3
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => ([(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,5),(4,5)],6) => 4
([(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 4
([(0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => ([(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => 5
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The Hadwiger number of the graph.
Also known as clique contraction number, this is the size of the largest complete minor.
Map
vertex addition
Description
Adds a disconnected vertex to a graph.