Identifier
- St000827: Binary words ⟶ ℤ
Values
0 => 2
1 => 3
00 => 4
01 => 5
10 => 6
11 => 7
000 => 8
001 => 9
010 => 10
011 => 11
100 => 12
101 => 13
110 => 14
111 => 15
0000 => 16
0001 => 17
0010 => 18
0011 => 19
0100 => 20
0101 => 21
0110 => 22
0111 => 23
1000 => 24
1001 => 25
1010 => 26
1011 => 27
1100 => 28
1101 => 29
1110 => 30
1111 => 31
00000 => 32
00001 => 33
00010 => 34
00011 => 35
00100 => 36
00101 => 37
00110 => 38
00111 => 39
01000 => 40
01001 => 41
01010 => 42
01011 => 43
01100 => 44
01101 => 45
01110 => 46
01111 => 47
10000 => 48
10001 => 49
10010 => 50
10011 => 51
10100 => 52
10101 => 53
10110 => 54
10111 => 55
11000 => 56
11001 => 57
11010 => 58
11011 => 59
11100 => 60
11101 => 61
11110 => 62
11111 => 63
000000 => 64
000001 => 65
000010 => 66
000011 => 67
000100 => 68
000101 => 69
000110 => 70
000111 => 71
001000 => 72
001001 => 73
001010 => 74
001011 => 75
001100 => 76
001101 => 77
001110 => 78
001111 => 79
010000 => 80
010001 => 81
010010 => 82
010011 => 83
010100 => 84
010101 => 85
010110 => 86
010111 => 87
011000 => 88
011001 => 89
011010 => 90
011011 => 91
011100 => 92
011101 => 93
011110 => 94
011111 => 95
100000 => 96
100001 => 97
100010 => 98
100011 => 99
100100 => 100
100101 => 101
100110 => 102
>>> Load all 1200 entries. <<<100111 => 103
101000 => 104
101001 => 105
101010 => 106
101011 => 107
101100 => 108
101101 => 109
101110 => 110
101111 => 111
110000 => 112
110001 => 113
110010 => 114
110011 => 115
110100 => 116
110101 => 117
110110 => 118
110111 => 119
111000 => 120
111001 => 121
111010 => 122
111011 => 123
111100 => 124
111101 => 125
111110 => 126
111111 => 127
0000000 => 128
0000001 => 129
0000010 => 130
0000011 => 131
0000100 => 132
0000101 => 133
0000110 => 134
0000111 => 135
0001000 => 136
0001001 => 137
0001010 => 138
0001011 => 139
0001100 => 140
0001101 => 141
0001110 => 142
0001111 => 143
0010000 => 144
0010001 => 145
0010010 => 146
0010011 => 147
0010100 => 148
0010101 => 149
0010110 => 150
0010111 => 151
0011000 => 152
0011001 => 153
0011010 => 154
0011011 => 155
0011100 => 156
0011101 => 157
0011110 => 158
0011111 => 159
0100000 => 160
0100001 => 161
0100010 => 162
0100011 => 163
0100100 => 164
0100101 => 165
0100110 => 166
0100111 => 167
0101000 => 168
0101001 => 169
0101010 => 170
0101011 => 171
0101100 => 172
0101101 => 173
0101110 => 174
0101111 => 175
0110000 => 176
0110001 => 177
0110010 => 178
0110011 => 179
0110100 => 180
0110101 => 181
0110110 => 182
0110111 => 183
0111000 => 184
0111001 => 185
0111010 => 186
0111011 => 187
0111100 => 188
0111101 => 189
0111110 => 190
0111111 => 191
1000000 => 192
1000001 => 193
1000010 => 194
1000011 => 195
1000100 => 196
1000101 => 197
1000110 => 198
1000111 => 199
1001000 => 200
1001001 => 201
1001010 => 202
1001011 => 203
1001100 => 204
1001101 => 205
1001110 => 206
1001111 => 207
1010000 => 208
1010001 => 209
1010010 => 210
1010011 => 211
1010100 => 212
1010101 => 213
1010110 => 214
1010111 => 215
1011000 => 216
1011001 => 217
1011010 => 218
1011011 => 219
1011100 => 220
1011101 => 221
1011110 => 222
1011111 => 223
1100000 => 224
1100001 => 225
1100010 => 226
1100011 => 227
1100100 => 228
1100101 => 229
1100110 => 230
1100111 => 231
1101000 => 232
1101001 => 233
1101010 => 234
1101011 => 235
1101100 => 236
1101101 => 237
1101110 => 238
1101111 => 239
1110000 => 240
1110001 => 241
1110010 => 242
1110011 => 243
1110100 => 244
1110101 => 245
1110110 => 246
1110111 => 247
1111000 => 248
1111001 => 249
1111010 => 250
1111011 => 251
1111100 => 252
1111101 => 253
1111110 => 254
1111111 => 255
00000000 => 256
00000001 => 257
00000010 => 258
00000011 => 259
00000100 => 260
00000101 => 261
00000110 => 262
00000111 => 263
00001000 => 264
00001001 => 265
00001010 => 266
00001011 => 267
00001100 => 268
00001101 => 269
00001110 => 270
00001111 => 271
00010000 => 272
00010001 => 273
00010010 => 274
00010011 => 275
00010100 => 276
00010101 => 277
00010110 => 278
00010111 => 279
00011000 => 280
00011001 => 281
00011010 => 282
00011011 => 283
00011100 => 284
00011101 => 285
00011110 => 286
00011111 => 287
00100000 => 288
00100001 => 289
00100010 => 290
00100011 => 291
00100100 => 292
00100101 => 293
00100110 => 294
00100111 => 295
00101000 => 296
00101001 => 297
00101010 => 298
00101011 => 299
00101100 => 300
00101101 => 301
00101110 => 302
00101111 => 303
00110000 => 304
00110001 => 305
00110010 => 306
00110011 => 307
00110100 => 308
00110101 => 309
00110110 => 310
00110111 => 311
00111000 => 312
00111001 => 313
00111010 => 314
00111011 => 315
00111100 => 316
00111101 => 317
00111110 => 318
00111111 => 319
01000000 => 320
01000001 => 321
01000010 => 322
01000011 => 323
01000100 => 324
01000101 => 325
01000110 => 326
01000111 => 327
01001000 => 328
01001001 => 329
01001010 => 330
01001011 => 331
01001100 => 332
01001101 => 333
01001110 => 334
01001111 => 335
01010000 => 336
01010001 => 337
01010010 => 338
01010011 => 339
01010100 => 340
01010101 => 341
01010110 => 342
01010111 => 343
01011000 => 344
01011001 => 345
01011010 => 346
01011011 => 347
01011100 => 348
01011101 => 349
01011110 => 350
01011111 => 351
01100000 => 352
01100001 => 353
01100010 => 354
01100011 => 355
01100100 => 356
01100101 => 357
01100110 => 358
01100111 => 359
01101000 => 360
01101001 => 361
01101010 => 362
01101011 => 363
01101100 => 364
01101101 => 365
01101110 => 366
01101111 => 367
01110000 => 368
01110001 => 369
01110010 => 370
01110011 => 371
01110100 => 372
01110101 => 373
01110110 => 374
01110111 => 375
01111000 => 376
01111001 => 377
01111010 => 378
01111011 => 379
01111100 => 380
01111101 => 381
01111110 => 382
01111111 => 383
10000000 => 384
10000001 => 385
10000010 => 386
10000011 => 387
10000100 => 388
10000101 => 389
10000110 => 390
10000111 => 391
10001000 => 392
10001001 => 393
10001010 => 394
10001011 => 395
10001100 => 396
10001101 => 397
10001110 => 398
10001111 => 399
10010000 => 400
10010001 => 401
10010010 => 402
10010011 => 403
10010100 => 404
10010101 => 405
10010110 => 406
10010111 => 407
10011000 => 408
10011001 => 409
10011010 => 410
10011011 => 411
10011100 => 412
10011101 => 413
10011110 => 414
10011111 => 415
10100000 => 416
10100001 => 417
10100010 => 418
10100011 => 419
10100100 => 420
10100101 => 421
10100110 => 422
10100111 => 423
10101000 => 424
10101001 => 425
10101010 => 426
10101011 => 427
10101100 => 428
10101101 => 429
10101110 => 430
10101111 => 431
10110000 => 432
10110001 => 433
10110010 => 434
10110011 => 435
10110100 => 436
10110101 => 437
10110110 => 438
10110111 => 439
10111000 => 440
10111001 => 441
10111010 => 442
10111011 => 443
10111100 => 444
10111101 => 445
10111110 => 446
10111111 => 447
11000000 => 448
11000001 => 449
11000010 => 450
11000011 => 451
11000100 => 452
11000101 => 453
11000110 => 454
11000111 => 455
11001000 => 456
11001001 => 457
11001010 => 458
11001011 => 459
11001100 => 460
11001101 => 461
11001110 => 462
11001111 => 463
11010000 => 464
11010001 => 465
11010010 => 466
11010011 => 467
11010100 => 468
11010101 => 469
11010110 => 470
11010111 => 471
11011000 => 472
11011001 => 473
11011010 => 474
11011011 => 475
11011100 => 476
11011101 => 477
11011110 => 478
11011111 => 479
11100000 => 480
11100001 => 481
11100010 => 482
11100011 => 483
11100100 => 484
11100101 => 485
11100110 => 486
11100111 => 487
11101000 => 488
11101001 => 489
11101010 => 490
11101011 => 491
11101100 => 492
11101101 => 493
11101110 => 494
11101111 => 495
11110000 => 496
11110001 => 497
11110010 => 498
11110011 => 499
11110100 => 500
11110101 => 501
11110110 => 502
11110111 => 503
11111000 => 504
11111001 => 505
11111010 => 506
11111011 => 507
11111100 => 508
11111101 => 509
11111110 => 510
11111111 => 511
000000000 => 512
000000001 => 513
000000010 => 514
000000011 => 515
000000100 => 516
000000101 => 517
000000110 => 518
000000111 => 519
000001000 => 520
000001001 => 521
000001010 => 522
000001011 => 523
000001100 => 524
000001101 => 525
000001110 => 526
000001111 => 527
000010000 => 528
000010001 => 529
000010010 => 530
000010011 => 531
000010100 => 532
000010101 => 533
000010110 => 534
000010111 => 535
000011000 => 536
000011001 => 537
000011010 => 538
000011011 => 539
000011100 => 540
000011101 => 541
000011110 => 542
000011111 => 543
000100000 => 544
000100001 => 545
000100010 => 546
000100011 => 547
000100100 => 548
000100101 => 549
000100110 => 550
000100111 => 551
000101000 => 552
000101001 => 553
000101010 => 554
000101011 => 555
000101100 => 556
000101101 => 557
000101110 => 558
000101111 => 559
000110000 => 560
000110001 => 561
000110010 => 562
000110011 => 563
000110100 => 564
000110101 => 565
000110110 => 566
000110111 => 567
000111000 => 568
000111001 => 569
000111010 => 570
000111011 => 571
000111100 => 572
000111101 => 573
000111110 => 574
000111111 => 575
001000000 => 576
001000001 => 577
001000010 => 578
001000011 => 579
001000100 => 580
001000101 => 581
001000110 => 582
001000111 => 583
001001000 => 584
001001001 => 585
001001010 => 586
001001011 => 587
001001100 => 588
001001101 => 589
001001110 => 590
001001111 => 591
001010000 => 592
001010001 => 593
001010010 => 594
001010011 => 595
001010100 => 596
001010101 => 597
001010110 => 598
001010111 => 599
001011000 => 600
001011001 => 601
001011010 => 602
001011011 => 603
001011100 => 604
001011101 => 605
001011110 => 606
001011111 => 607
001100000 => 608
001100001 => 609
001100010 => 610
001100011 => 611
001100100 => 612
001100101 => 613
001100110 => 614
001100111 => 615
001101000 => 616
001101001 => 617
001101010 => 618
001101011 => 619
001101100 => 620
001101101 => 621
001101110 => 622
001101111 => 623
001110000 => 624
001110001 => 625
001110010 => 626
001110011 => 627
001110100 => 628
001110101 => 629
001110110 => 630
001110111 => 631
001111000 => 632
001111001 => 633
001111010 => 634
001111011 => 635
001111100 => 636
001111101 => 637
001111110 => 638
001111111 => 639
010000000 => 640
010000001 => 641
010000010 => 642
010000011 => 643
010000100 => 644
010000101 => 645
010000110 => 646
010000111 => 647
010001000 => 648
010001001 => 649
010001010 => 650
010001011 => 651
010001100 => 652
010001101 => 653
010001110 => 654
010001111 => 655
010010000 => 656
010010001 => 657
010010010 => 658
010010011 => 659
010010100 => 660
010010101 => 661
010010110 => 662
010010111 => 663
010011000 => 664
010011001 => 665
010011010 => 666
010011011 => 667
010011100 => 668
010011101 => 669
010011110 => 670
010011111 => 671
010100000 => 672
010100001 => 673
010100010 => 674
010100011 => 675
010100100 => 676
010100101 => 677
010100110 => 678
010100111 => 679
010101000 => 680
010101001 => 681
010101010 => 682
010101011 => 683
010101100 => 684
010101101 => 685
010101110 => 686
010101111 => 687
010110000 => 688
010110001 => 689
010110010 => 690
010110011 => 691
010110100 => 692
010110101 => 693
010110110 => 694
010110111 => 695
010111000 => 696
010111001 => 697
010111010 => 698
010111011 => 699
010111100 => 700
010111101 => 701
010111110 => 702
010111111 => 703
011000000 => 704
011000001 => 705
011000010 => 706
011000011 => 707
011000100 => 708
011000101 => 709
011000110 => 710
011000111 => 711
011001000 => 712
011001001 => 713
011001010 => 714
011001011 => 715
011001100 => 716
011001101 => 717
011001110 => 718
011001111 => 719
011010000 => 720
011010001 => 721
011010010 => 722
011010011 => 723
011010100 => 724
011010101 => 725
011010110 => 726
011010111 => 727
011011000 => 728
011011001 => 729
011011010 => 730
011011011 => 731
011011100 => 732
011011101 => 733
011011110 => 734
011011111 => 735
011100000 => 736
011100001 => 737
011100010 => 738
011100011 => 739
011100100 => 740
011100101 => 741
011100110 => 742
011100111 => 743
011101000 => 744
011101001 => 745
011101010 => 746
011101011 => 747
011101100 => 748
011101101 => 749
011101110 => 750
011101111 => 751
011110000 => 752
011110001 => 753
011110010 => 754
011110011 => 755
011110100 => 756
011110101 => 757
011110110 => 758
011110111 => 759
011111000 => 760
011111001 => 761
011111010 => 762
011111011 => 763
011111100 => 764
011111101 => 765
011111110 => 766
011111111 => 767
100000000 => 768
100000001 => 769
100000010 => 770
100000011 => 771
100000100 => 772
100000101 => 773
100000110 => 774
100000111 => 775
100001000 => 776
100001001 => 777
100001010 => 778
100001011 => 779
100001100 => 780
100001101 => 781
100001110 => 782
100001111 => 783
100010000 => 784
100010001 => 785
100010010 => 786
100010011 => 787
100010100 => 788
100010101 => 789
100010110 => 790
100010111 => 791
100011000 => 792
100011001 => 793
100011010 => 794
100011011 => 795
100011100 => 796
100011101 => 797
100011110 => 798
100011111 => 799
100100000 => 800
100100001 => 801
100100010 => 802
100100011 => 803
100100100 => 804
100100101 => 805
100100110 => 806
100100111 => 807
100101000 => 808
100101001 => 809
100101010 => 810
100101011 => 811
100101100 => 812
100101101 => 813
100101110 => 814
100101111 => 815
100110000 => 816
100110001 => 817
100110010 => 818
100110011 => 819
100110100 => 820
100110101 => 821
100110110 => 822
100110111 => 823
100111000 => 824
100111001 => 825
100111010 => 826
100111011 => 827
100111100 => 828
100111101 => 829
100111110 => 830
100111111 => 831
101000000 => 832
101000001 => 833
101000010 => 834
101000011 => 835
101000100 => 836
101000101 => 837
101000110 => 838
101000111 => 839
101001000 => 840
101001001 => 841
101001010 => 842
101001011 => 843
101001100 => 844
101001101 => 845
101001110 => 846
101001111 => 847
101010000 => 848
101010001 => 849
101010010 => 850
101010011 => 851
101010100 => 852
101010101 => 853
101010110 => 854
101010111 => 855
101011000 => 856
101011001 => 857
101011010 => 858
101011011 => 859
101011100 => 860
101011101 => 861
101011110 => 862
101011111 => 863
101100000 => 864
101100001 => 865
101100010 => 866
101100011 => 867
101100100 => 868
101100101 => 869
101100110 => 870
101100111 => 871
101101000 => 872
101101001 => 873
101101010 => 874
101101011 => 875
101101100 => 876
101101101 => 877
101101110 => 878
101101111 => 879
101110000 => 880
101110001 => 881
101110010 => 882
101110011 => 883
101110100 => 884
101110101 => 885
101110110 => 886
101110111 => 887
101111000 => 888
101111001 => 889
101111010 => 890
101111011 => 891
101111100 => 892
101111101 => 893
101111110 => 894
101111111 => 895
110000000 => 896
110000001 => 897
110000010 => 898
110000011 => 899
110000100 => 900
110000101 => 901
110000110 => 902
110000111 => 903
110001000 => 904
110001001 => 905
110001010 => 906
110001011 => 907
110001100 => 908
110001101 => 909
110001110 => 910
110001111 => 911
110010000 => 912
110010001 => 913
110010010 => 914
110010011 => 915
110010100 => 916
110010101 => 917
110010110 => 918
110010111 => 919
110011000 => 920
110011001 => 921
110011010 => 922
110011011 => 923
110011100 => 924
110011101 => 925
110011110 => 926
110011111 => 927
110100000 => 928
110100001 => 929
110100010 => 930
110100011 => 931
110100100 => 932
110100101 => 933
110100110 => 934
110100111 => 935
110101000 => 936
110101001 => 937
110101010 => 938
110101011 => 939
110101100 => 940
110101101 => 941
110101110 => 942
110101111 => 943
110110000 => 944
110110001 => 945
110110010 => 946
110110011 => 947
110110100 => 948
110110101 => 949
110110110 => 950
110110111 => 951
110111000 => 952
110111001 => 953
110111010 => 954
110111011 => 955
110111100 => 956
110111101 => 957
110111110 => 958
110111111 => 959
111000000 => 960
111000001 => 961
111000010 => 962
111000011 => 963
111000100 => 964
111000101 => 965
111000110 => 966
111000111 => 967
111001000 => 968
111001001 => 969
111001010 => 970
111001011 => 971
111001100 => 972
111001101 => 973
111001110 => 974
111001111 => 975
111010000 => 976
111010001 => 977
111010010 => 978
111010011 => 979
111010100 => 980
111010101 => 981
111010110 => 982
111010111 => 983
111011000 => 984
111011001 => 985
111011010 => 986
111011011 => 987
111011100 => 988
111011101 => 989
111011110 => 990
111011111 => 991
111100000 => 992
111100001 => 993
111100010 => 994
111100011 => 995
111100100 => 996
111100101 => 997
111100110 => 998
111100111 => 999
111101000 => 1000
111101001 => 1001
111101010 => 1002
111101011 => 1003
111101100 => 1004
111101101 => 1005
111101110 => 1006
111101111 => 1007
111110000 => 1008
111110001 => 1009
111110010 => 1010
111110011 => 1011
111110100 => 1012
111110101 => 1013
111110110 => 1014
111110111 => 1015
111111000 => 1016
111111001 => 1017
111111010 => 1018
111111011 => 1019
111111100 => 1020
111111101 => 1021
111111110 => 1022
111111111 => 1023
0000000001 => 1025
0010000001 => 1153
0010101101 => 1197
0010101011 => 1195
0010100111 => 1191
0010011101 => 1181
0010011011 => 1179
0010010111 => 1175
0010001111 => 1167
0001110101 => 1141
0001110011 => 1139
0001101101 => 1133
0001101011 => 1131
0001100111 => 1127
0001011101 => 1117
0001011011 => 1115
0001010111 => 1111
0001001111 => 1103
0000111101 => 1085
0000111011 => 1083
0000110111 => 1079
0000101111 => 1071
0000011111 => 1055
0000000000 => 1024
0000000110 => 1030
0000011000 => 1048
0000011110 => 1054
0000010010 => 1042
0001100000 => 1120
0001100110 => 1126
0001111000 => 1144
0001111110 => 1150
0001110010 => 1138
0001001000 => 1096
0001001110 => 1102
0001000010 => 1090
0001011010 => 1114
0010101010 => 1194
0010101000 => 1192
0010101100 => 1196
0010100100 => 1188
0010010100 => 1172
0001010100 => 1108
0010101110 => 1198
0010100000 => 1184
0010000100 => 1156
0000010100 => 1044
0000000010 => 1026
0000001110 => 1038
0000111110 => 1086
0000000100 => 1028
0000001010 => 1034
0000010110 => 1046
0000101110 => 1070
0001011110 => 1118
0001101110 => 1134
0001110110 => 1142
0001111010 => 1146
0001111100 => 1148
0000000101 => 1029
0000001101 => 1037
0000011101 => 1053
0001111101 => 1149
0000001001 => 1033
0000010101 => 1045
0000101101 => 1069
0010110001 => 1201
0001100001 => 1121
0001000001 => 1089
0000111111 => 1087
0001110100 => 1140
0001101100 => 1132
0010011100 => 1180
0001011100 => 1116
0000111100 => 1084
0001101010 => 1130
0010011010 => 1178
0000111010 => 1082
0010100110 => 1190
0010010110 => 1174
0001010110 => 1110
0000110110 => 1078
0010001110 => 1166
0001101001 => 1129
0000110001 => 1073
0000010001 => 1041
0000001100 => 1036
0000011001 => 1049
0000110011 => 1075
0000110100 => 1076
0000000011 => 1027
0000011011 => 1051
0001101111 => 1135
0000110101 => 1077
0010000010 => 1154
0001000011 => 1091
0010011110 => 1182
0001010000 => 1104
0001000100 => 1092
0001010101 => 1109
0001001011 => 1099
0001100011 => 1123
0001110111 => 1143
0010000000 => 1152
0000000111 => 1031
0000001111 => 1039
0001111111 => 1151
0000001011 => 1035
0000010111 => 1047
0001011111 => 1119
0001111001 => 1145
0000011010 => 1050
0000101010 => 1066
0000100101 => 1061
0010010001 => 1169
0010000101 => 1157
0010010101 => 1173
0010010011 => 1171
0000101011 => 1067
0001000111 => 1095
0000100111 => 1063
0010010010 => 1170
0001001010 => 1098
0001001001 => 1097
0001000101 => 1093
0000100011 => 1059
0000100100 => 1060
0000100010 => 1058
0010110000 => 1200
0000011100 => 1052
0000001000 => 1032
0000101100 => 1068
0010101111 => 1199
0000101000 => 1064
0010001000 => 1160
0001001100 => 1100
0001000110 => 1094
0001100100 => 1124
0001100010 => 1122
0000100110 => 1062
0000110010 => 1074
0010010000 => 1168
0001010010 => 1106
0001000000 => 1088
0001011001 => 1113
0001100101 => 1125
0001110001 => 1137
0010011001 => 1177
0010100101 => 1189
0010101001 => 1193
0010011111 => 1183
0000111001 => 1081
0010001101 => 1165
0001001101 => 1101
0001010001 => 1105
0001010011 => 1107
0001111011 => 1147
0010011000 => 1176
0001011000 => 1112
0000100000 => 1056
0010001011 => 1163
0010000111 => 1159
0000010011 => 1043
0010001100 => 1164
0010000110 => 1158
0000110000 => 1072
0000100001 => 1057
0010100011 => 1187
0010100001 => 1185
0000111000 => 1080
0001101000 => 1128
0000010000 => 1040
0000101001 => 1065
0010100010 => 1186
0010001001 => 1161
0010000011 => 1155
0010001010 => 1162
0001110000 => 1136
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Generating function
click to show known generating functions
Search the OEIS for these generating functions
Search the Online Encyclopedia of Integer
Sequences for the coefficients of a few of the
first generating functions, in the case at hand:
1,1 1,1,1,1 1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
$F_{1} = q^{2} + q^{3}$
$F_{2} = q^{4} + q^{5} + q^{6} + q^{7}$
$F_{3} = q^{8} + q^{9} + q^{10} + q^{11} + q^{12} + q^{13} + q^{14} + q^{15}$
$F_{4} = q^{16} + q^{17} + q^{18} + q^{19} + q^{20} + q^{21} + q^{22} + q^{23} + q^{24} + q^{25} + q^{26} + q^{27} + q^{28} + q^{29} + q^{30} + q^{31}$
$F_{5} = q^{32} + q^{33} + q^{34} + q^{35} + q^{36} + q^{37} + q^{38} + q^{39} + q^{40} + q^{41} + q^{42} + q^{43} + q^{44} + q^{45} + q^{46} + q^{47} + q^{48} + q^{49} + q^{50} + q^{51} + q^{52} + q^{53} + q^{54} + q^{55} + q^{56} + q^{57} + q^{58} + q^{59} + q^{60} + q^{61} + q^{62} + q^{63}$
$F_{6} = q^{64} + q^{65} + q^{66} + q^{67} + q^{68} + q^{69} + q^{70} + q^{71} + q^{72} + q^{73} + q^{74} + q^{75} + q^{76} + q^{77} + q^{78} + q^{79} + q^{80} + q^{81} + q^{82} + q^{83} + q^{84} + q^{85} + q^{86} + q^{87} + q^{88} + q^{89} + q^{90} + q^{91} + q^{92} + q^{93} + q^{94} + q^{95} + q^{96} + q^{97} + q^{98} + q^{99} + q^{100} + q^{101} + q^{102} + q^{103} + q^{104} + q^{105} + q^{106} + q^{107} + q^{108} + q^{109} + q^{110} + q^{111} + q^{112} + q^{113} + q^{114} + q^{115} + q^{116} + q^{117} + q^{118} + q^{119} + q^{120} + q^{121} + q^{122} + q^{123} + q^{124} + q^{125} + q^{126} + q^{127}$
$F_{7} = q^{128} + q^{129} + q^{130} + q^{131} + q^{132} + q^{133} + q^{134} + q^{135} + q^{136} + q^{137} + q^{138} + q^{139} + q^{140} + q^{141} + q^{142} + q^{143} + q^{144} + q^{145} + q^{146} + q^{147} + q^{148} + q^{149} + q^{150} + q^{151} + q^{152} + q^{153} + q^{154} + q^{155} + q^{156} + q^{157} + q^{158} + q^{159} + q^{160} + q^{161} + q^{162} + q^{163} + q^{164} + q^{165} + q^{166} + q^{167} + q^{168} + q^{169} + q^{170} + q^{171} + q^{172} + q^{173} + q^{174} + q^{175} + q^{176} + q^{177} + q^{178} + q^{179} + q^{180} + q^{181} + q^{182} + q^{183} + q^{184} + q^{185} + q^{186} + q^{187} + q^{188} + q^{189} + q^{190} + q^{191} + q^{192} + q^{193} + q^{194} + q^{195} + q^{196} + q^{197} + q^{198} + q^{199} + q^{200} + q^{201} + q^{202} + q^{203} + q^{204} + q^{205} + q^{206} + q^{207} + q^{208} + q^{209} + q^{210} + q^{211} + q^{212} + q^{213} + q^{214} + q^{215} + q^{216} + q^{217} + q^{218} + q^{219} + q^{220} + q^{221} + q^{222} + q^{223} + q^{224} + q^{225} + q^{226} + q^{227} + q^{228} + q^{229} + q^{230} + q^{231} + q^{232} + q^{233} + q^{234} + q^{235} + q^{236} + q^{237} + q^{238} + q^{239} + q^{240} + q^{241} + q^{242} + q^{243} + q^{244} + q^{245} + q^{246} + q^{247} + q^{248} + q^{249} + q^{250} + q^{251} + q^{252} + q^{253} + q^{254} + q^{255}$
$F_{8} = q^{256} + q^{257} + q^{258} + q^{259} + q^{260} + q^{261} + q^{262} + q^{263} + q^{264} + q^{265} + q^{266} + q^{267} + q^{268} + q^{269} + q^{270} + q^{271} + q^{272} + q^{273} + q^{274} + q^{275} + q^{276} + q^{277} + q^{278} + q^{279} + q^{280} + q^{281} + q^{282} + q^{283} + q^{284} + q^{285} + q^{286} + q^{287} + q^{288} + q^{289} + q^{290} + q^{291} + q^{292} + q^{293} + q^{294} + q^{295} + q^{296} + q^{297} + q^{298} + q^{299} + q^{300} + q^{301} + q^{302} + q^{303} + q^{304} + q^{305} + q^{306} + q^{307} + q^{308} + q^{309} + q^{310} + q^{311} + q^{312} + q^{313} + q^{314} + q^{315} + q^{316} + q^{317} + q^{318} + q^{319} + q^{320} + q^{321} + q^{322} + q^{323} + q^{324} + q^{325} + q^{326} + q^{327} + q^{328} + q^{329} + q^{330} + q^{331} + q^{332} + q^{333} + q^{334} + q^{335} + q^{336} + q^{337} + q^{338} + q^{339} + q^{340} + q^{341} + q^{342} + q^{343} + q^{344} + q^{345} + q^{346} + q^{347} + q^{348} + q^{349} + q^{350} + q^{351} + q^{352} + q^{353} + q^{354} + q^{355} + q^{356} + q^{357} + q^{358} + q^{359} + q^{360} + q^{361} + q^{362} + q^{363} + q^{364} + q^{365} + q^{366} + q^{367} + q^{368} + q^{369} + q^{370} + q^{371} + q^{372} + q^{373} + q^{374} + q^{375} + q^{376} + q^{377} + q^{378} + q^{379} + q^{380} + q^{381} + q^{382} + q^{383} + q^{384} + q^{385} + q^{386} + q^{387} + q^{388} + q^{389} + q^{390} + q^{391} + q^{392} + q^{393} + q^{394} + q^{395} + q^{396} + q^{397} + q^{398} + q^{399} + q^{400} + q^{401} + q^{402} + q^{403} + q^{404} + q^{405} + q^{406} + q^{407} + q^{408} + q^{409} + q^{410} + q^{411} + q^{412} + q^{413} + q^{414} + q^{415} + q^{416} + q^{417} + q^{418} + q^{419} + q^{420} + q^{421} + q^{422} + q^{423} + q^{424} + q^{425} + q^{426} + q^{427} + q^{428} + q^{429} + q^{430} + q^{431} + q^{432} + q^{433} + q^{434} + q^{435} + q^{436} + q^{437} + q^{438} + q^{439} + q^{440} + q^{441} + q^{442} + q^{443} + q^{444} + q^{445} + q^{446} + q^{447} + q^{448} + q^{449} + q^{450} + q^{451} + q^{452} + q^{453} + q^{454} + q^{455} + q^{456} + q^{457} + q^{458} + q^{459} + q^{460} + q^{461} + q^{462} + q^{463} + q^{464} + q^{465} + q^{466} + q^{467} + q^{468} + q^{469} + q^{470} + q^{471} + q^{472} + q^{473} + q^{474} + q^{475} + q^{476} + q^{477} + q^{478} + q^{479} + q^{480} + q^{481} + q^{482} + q^{483} + q^{484} + q^{485} + q^{486} + q^{487} + q^{488} + q^{489} + q^{490} + q^{491} + q^{492} + q^{493} + q^{494} + q^{495} + q^{496} + q^{497} + q^{498} + q^{499} + q^{500} + q^{501} + q^{502} + q^{503} + q^{504} + q^{505} + q^{506} + q^{507} + q^{508} + q^{509} + q^{510} + q^{511}$
$F_{9} = q^{512} + q^{513} + q^{514} + q^{515} + q^{516} + q^{517} + q^{518} + q^{519} + q^{520} + q^{521} + q^{522} + q^{523} + q^{524} + q^{525} + q^{526} + q^{527} + q^{528} + q^{529} + q^{530} + q^{531} + q^{532} + q^{533} + q^{534} + q^{535} + q^{536} + q^{537} + q^{538} + q^{539} + q^{540} + q^{541} + q^{542} + q^{543} + q^{544} + q^{545} + q^{546} + q^{547} + q^{548} + q^{549} + q^{550} + q^{551} + q^{552} + q^{553} + q^{554} + q^{555} + q^{556} + q^{557} + q^{558} + q^{559} + q^{560} + q^{561} + q^{562} + q^{563} + q^{564} + q^{565} + q^{566} + q^{567} + q^{568} + q^{569} + q^{570} + q^{571} + q^{572} + q^{573} + q^{574} + q^{575} + q^{576} + q^{577} + q^{578} + q^{579} + q^{580} + q^{581} + q^{582} + q^{583} + q^{584} + q^{585} + q^{586} + q^{587} + q^{588} + q^{589} + q^{590} + q^{591} + q^{592} + q^{593} + q^{594} + q^{595} + q^{596} + q^{597} + q^{598} + q^{599} + q^{600} + q^{601} + q^{602} + q^{603} + q^{604} + q^{605} + q^{606} + q^{607} + q^{608} + q^{609} + q^{610} + q^{611} + q^{612} + q^{613} + q^{614} + q^{615} + q^{616} + q^{617} + q^{618} + q^{619} + q^{620} + q^{621} + q^{622} + q^{623} + q^{624} + q^{625} + q^{626} + q^{627} + q^{628} + q^{629} + q^{630} + q^{631} + q^{632} + q^{633} + q^{634} + q^{635} + q^{636} + q^{637} + q^{638} + q^{639} + q^{640} + q^{641} + q^{642} + q^{643} + q^{644} + q^{645} + q^{646} + q^{647} + q^{648} + q^{649} + q^{650} + q^{651} + q^{652} + q^{653} + q^{654} + q^{655} + q^{656} + q^{657} + q^{658} + q^{659} + q^{660} + q^{661} + q^{662} + q^{663} + q^{664} + q^{665} + q^{666} + q^{667} + q^{668} + q^{669} + q^{670} + q^{671} + q^{672} + q^{673} + q^{674} + q^{675} + q^{676} + q^{677} + q^{678} + q^{679} + q^{680} + q^{681} + q^{682} + q^{683} + q^{684} + q^{685} + q^{686} + q^{687} + q^{688} + q^{689} + q^{690} + q^{691} + q^{692} + q^{693} + q^{694} + q^{695} + q^{696} + q^{697} + q^{698} + q^{699} + q^{700} + q^{701} + q^{702} + q^{703} + q^{704} + q^{705} + q^{706} + q^{707} + q^{708} + q^{709} + q^{710} + q^{711} + q^{712} + q^{713} + q^{714} + q^{715} + q^{716} + q^{717} + q^{718} + q^{719} + q^{720} + q^{721} + q^{722} + q^{723} + q^{724} + q^{725} + q^{726} + q^{727} + q^{728} + q^{729} + q^{730} + q^{731} + q^{732} + q^{733} + q^{734} + q^{735} + q^{736} + q^{737} + q^{738} + q^{739} + q^{740} + q^{741} + q^{742} + q^{743} + q^{744} + q^{745} + q^{746} + q^{747} + q^{748} + q^{749} + q^{750} + q^{751} + q^{752} + q^{753} + q^{754} + q^{755} + q^{756} + q^{757} + q^{758} + q^{759} + q^{760} + q^{761} + q^{762} + q^{763} + q^{764} + q^{765} + q^{766} + q^{767} + q^{768} + q^{769} + q^{770} + q^{771} + q^{772} + q^{773} + q^{774} + q^{775} + q^{776} + q^{777} + q^{778} + q^{779} + q^{780} + q^{781} + q^{782} + q^{783} + q^{784} + q^{785} + q^{786} + q^{787} + q^{788} + q^{789} + q^{790} + q^{791} + q^{792} + q^{793} + q^{794} + q^{795} + q^{796} + q^{797} + q^{798} + q^{799} + q^{800} + q^{801} + q^{802} + q^{803} + q^{804} + q^{805} + q^{806} + q^{807} + q^{808} + q^{809} + q^{810} + q^{811} + q^{812} + q^{813} + q^{814} + q^{815} + q^{816} + q^{817} + q^{818} + q^{819} + q^{820} + q^{821} + q^{822} + q^{823} + q^{824} + q^{825} + q^{826} + q^{827} + q^{828} + q^{829} + q^{830} + q^{831} + q^{832} + q^{833} + q^{834} + q^{835} + q^{836} + q^{837} + q^{838} + q^{839} + q^{840} + q^{841} + q^{842} + q^{843} + q^{844} + q^{845} + q^{846} + q^{847} + q^{848} + q^{849} + q^{850} + q^{851} + q^{852} + q^{853} + q^{854} + q^{855} + q^{856} + q^{857} + q^{858} + q^{859} + q^{860} + q^{861} + q^{862} + q^{863} + q^{864} + q^{865} + q^{866} + q^{867} + q^{868} + q^{869} + q^{870} + q^{871} + q^{872} + q^{873} + q^{874} + q^{875} + q^{876} + q^{877} + q^{878} + q^{879} + q^{880} + q^{881} + q^{882} + q^{883} + q^{884} + q^{885} + q^{886} + q^{887} + q^{888} + q^{889} + q^{890} + q^{891} + q^{892} + q^{893} + q^{894} + q^{895} + q^{896} + q^{897} + q^{898} + q^{899} + q^{900} + q^{901} + q^{902} + q^{903} + q^{904} + q^{905} + q^{906} + q^{907} + q^{908} + q^{909} + q^{910} + q^{911} + q^{912} + q^{913} + q^{914} + q^{915} + q^{916} + q^{917} + q^{918} + q^{919} + q^{920} + q^{921} + q^{922} + q^{923} + q^{924} + q^{925} + q^{926} + q^{927} + q^{928} + q^{929} + q^{930} + q^{931} + q^{932} + q^{933} + q^{934} + q^{935} + q^{936} + q^{937} + q^{938} + q^{939} + q^{940} + q^{941} + q^{942} + q^{943} + q^{944} + q^{945} + q^{946} + q^{947} + q^{948} + q^{949} + q^{950} + q^{951} + q^{952} + q^{953} + q^{954} + q^{955} + q^{956} + q^{957} + q^{958} + q^{959} + q^{960} + q^{961} + q^{962} + q^{963} + q^{964} + q^{965} + q^{966} + q^{967} + q^{968} + q^{969} + q^{970} + q^{971} + q^{972} + q^{973} + q^{974} + q^{975} + q^{976} + q^{977} + q^{978} + q^{979} + q^{980} + q^{981} + q^{982} + q^{983} + q^{984} + q^{985} + q^{986} + q^{987} + q^{988} + q^{989} + q^{990} + q^{991} + q^{992} + q^{993} + q^{994} + q^{995} + q^{996} + q^{997} + q^{998} + q^{999} + q^{1000} + q^{1001} + q^{1002} + q^{1003} + q^{1004} + q^{1005} + q^{1006} + q^{1007} + q^{1008} + q^{1009} + q^{1010} + q^{1011} + q^{1012} + q^{1013} + q^{1014} + q^{1015} + q^{1016} + q^{1017} + q^{1018} + q^{1019} + q^{1020} + q^{1021} + q^{1022} + q^{1023}$
Description
The decimal representation of a binary word with a leading 1.
This statistic is obtained by prepending $1$ to the binary word and interpreting it as a number in binary.
This statistic is obtained by prepending $1$ to the binary word and interpreting it as a number in binary.
Code
def statistic(w):
return Integer("0b1" + str(w))
Created
May 30, 2017 at 21:43 by Martin Rubey
Updated
May 30, 2017 at 21:43 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!