Identifier
Values
[1,0] => [1,1,0,0] => [1,2] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [2,1,3] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [1,2,3] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [3,2,1,4] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [2,3,1,4] => 1
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [3,1,2,4] => 1
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [2,1,3,4] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [1,2,3,4] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [4,3,2,1,5] => 2
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [3,4,2,1,5] => 2
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [4,2,3,1,5] => 2
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [3,2,4,1,5] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [2,3,4,1,5] => 1
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [4,3,1,2,5] => 2
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [3,4,1,2,5] => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [4,2,1,3,5] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [3,2,1,4,5] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [2,3,1,4,5] => 1
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [4,1,2,3,5] => 1
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [3,1,2,4,5] => 1
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [2,1,3,4,5] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => [5,4,3,2,1,6] => 3
[1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,1,0,0,0] => [4,5,3,2,1,6] => 3
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => [5,3,4,2,1,6] => 3
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,1,0,0,0] => [4,3,5,2,1,6] => 2
[1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,1,1,0,0,0,0] => [3,4,5,2,1,6] => 2
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,1,0,0] => [5,4,2,3,1,6] => 3
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,1,1,0,0,0] => [4,5,2,3,1,6] => 3
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,1,0,0] => [5,3,2,4,1,6] => 2
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,0,1,0,1,0,0,0] => [4,3,2,5,1,6] => 2
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,1,1,0,0,0,0] => [3,4,2,5,1,6] => 2
[1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,1,1,0,0,0,1,0,0] => [5,2,3,4,1,6] => 2
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,1,1,0,0,1,0,0,0] => [4,2,3,5,1,6] => 2
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,1,1,1,0,1,0,0,0,0] => [3,2,4,5,1,6] => 1
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [2,3,4,5,1,6] => 1
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [5,4,3,1,2,6] => 3
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [4,5,3,1,2,6] => 3
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [5,3,4,1,2,6] => 3
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [4,3,5,1,2,6] => 2
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [3,4,5,1,2,6] => 2
[1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,1,0,1,0,0] => [5,4,2,1,3,6] => 2
[1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,1,0,0,1,1,0,0,0] => [4,5,2,1,3,6] => 2
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,1,0,0] => [5,3,2,1,4,6] => 2
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,1,0,0,0] => [4,3,2,1,5,6] => 2
[1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,1,1,0,0,0,0] => [3,4,2,1,5,6] => 2
[1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,1,1,0,0,0,1,0,0] => [5,2,3,1,4,6] => 2
[1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,1,1,0,0,1,0,0,0] => [4,2,3,1,5,6] => 2
[1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,1,0,1,0,0,0,0] => [3,2,4,1,5,6] => 1
[1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,1,1,1,0,0,0,0,0] => [2,3,4,1,5,6] => 1
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [5,4,1,2,3,6] => 2
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [4,5,1,2,3,6] => 2
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [5,3,1,2,4,6] => 2
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [4,3,1,2,5,6] => 2
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [3,4,1,2,5,6] => 2
[1,1,1,0,1,0,0,0,1,0] => [1,1,1,1,0,1,0,0,0,1,0,0] => [5,2,1,3,4,6] => 1
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,1,0,1,0,0,1,0,0,0] => [4,2,1,3,5,6] => 1
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,1,0,1,0,1,0,0,0,0] => [3,2,1,4,5,6] => 1
[1,1,1,0,1,1,0,0,0,0] => [1,1,1,1,0,1,1,0,0,0,0,0] => [2,3,1,4,5,6] => 1
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [5,1,2,3,4,6] => 1
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [4,1,2,3,5,6] => 1
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [3,1,2,4,5,6] => 1
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,1,0,1,0,0,0,0,0] => [2,1,3,4,5,6] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,2,3,4,5,6] => 0
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,2,3,4,5,6,7] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of descents of distance 2 of a permutation.
This is, $\operatorname{des}_2(\pi) = | \{ i : \pi(i) > \pi(i+2) \} |$.
Map
to 132-avoiding permutation
Description
Sends a Dyck path to a 132-avoiding permutation.
This bijection is defined in [1, Section 2].
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.