Identifier
-
Mp00043:
Integer partitions
—to Dyck path⟶
Dyck paths
Mp00146: Dyck paths —to tunnel matching⟶ Perfect matchings
Mp00058: Perfect matchings —to permutation⟶ Permutations
St000837: Permutations ⟶ ℤ
Values
[1] => [1,0,1,0] => [(1,2),(3,4)] => [2,1,4,3] => 2
[2] => [1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => [4,3,2,1,6,5] => 2
[1,1] => [1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => [2,1,6,5,4,3] => 2
[2,1] => [1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => [2,1,4,3,6,5] => 4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ascents of distance 2 of a permutation.
This is, asc2(π)=|{i:π(i)<π(i+2)}|.
This is, asc2(π)=|{i:π(i)<π(i+2)}|.
Map
to permutation
Description
Returns the fixed point free involution whose transpositions are the pairs in the perfect matching.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path D of semilength n, the perfect matching of {1,…,2n} with i<j being matched if Di is an up-step and Dj is the down-step connected to Di by a tunnel.
This is, for a Dyck path D of semilength n, the perfect matching of {1,…,2n} with i<j being matched if Di is an up-step and Dj is the down-step connected to Di by a tunnel.
Map
to Dyck path
Description
Sends a partition to the shortest Dyck path tracing the shape of its Ferrers diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!