Identifier
Values
[1,0] => [1,0] => [1,0] => [(1,2)] => 1
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => [(1,2),(3,4)] => 3
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => [(1,4),(2,3)] => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => [(1,2),(3,4),(5,6)] => 5
[1,0,1,1,0,0] => [1,1,0,1,0,0] => [1,1,0,1,0,0] => [(1,6),(2,3),(4,5)] => 4
[1,1,0,0,1,0] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => [(1,6),(2,5),(3,4)] => 3
[1,1,0,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => [(1,4),(2,3),(5,6)] => 5
[1,1,1,0,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => [(1,2),(3,6),(4,5)] => 4
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8)] => 7
[1,0,1,0,1,1,0,0] => [1,1,1,0,1,0,0,0] => [1,1,0,1,0,1,0,0] => [(1,8),(2,3),(4,5),(6,7)] => 6
[1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [(1,8),(2,7),(3,4),(5,6)] => 5
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0] => [(1,6),(2,3),(4,5),(7,8)] => 7
[1,0,1,1,1,0,0,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,0,1,0,0] => [(1,2),(3,8),(4,5),(6,7)] => 6
[1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => [(1,4),(2,3),(5,8),(6,7)] => 6
[1,1,0,0,1,1,0,0] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [(1,8),(2,7),(3,6),(4,5)] => 4
[1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,1,0,0,1,0,0] => [(1,8),(2,5),(3,4),(6,7)] => 6
[1,1,0,1,0,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8)] => 7
[1,1,0,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => [(1,6),(2,5),(3,4),(7,8)] => 7
[1,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [(1,8),(2,3),(4,7),(5,6)] => 5
[1,1,1,0,0,1,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,0] => [(1,2),(3,8),(4,7),(5,6)] => 5
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => [(1,2),(3,6),(4,5),(7,8)] => 7
[1,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7)] => 6
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10)] => 9
[1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [1,1,0,1,0,1,0,1,0,0] => [(1,10),(2,3),(4,5),(6,7),(8,9)] => 8
[1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,1,0,1,0,0,0] => [(1,10),(2,9),(3,4),(5,6),(7,8)] => 7
[1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0] => [(1,8),(2,3),(4,5),(6,7),(9,10)] => 9
[1,0,1,0,1,1,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => [1,0,1,1,0,1,0,1,0,0] => [(1,2),(3,10),(4,5),(6,7),(8,9)] => 8
[1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,1,0,0] => [(1,10),(2,3),(4,7),(5,6),(8,9)] => 8
[1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,1,0,0,0,0] => [(1,10),(2,9),(3,8),(4,5),(6,7)] => 6
[1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,1,0,0] => [(1,10),(2,7),(3,4),(5,6),(8,9)] => 8
[1,0,1,1,0,1,0,1,0,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [(1,6),(2,3),(4,5),(7,8),(9,10)] => 9
[1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0] => [1,1,1,0,1,0,0,0,1,0] => [(1,8),(2,7),(3,4),(5,6),(9,10)] => 9
[1,0,1,1,1,0,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [(1,10),(2,3),(4,9),(5,6),(7,8)] => 7
[1,0,1,1,1,0,0,1,0,0] => [1,1,1,0,0,1,0,1,0,0] => [1,0,1,1,1,0,1,0,0,0] => [(1,2),(3,10),(4,9),(5,6),(7,8)] => 7
[1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0] => [(1,2),(3,8),(4,5),(6,7),(9,10)] => 9
[1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [(1,2),(3,4),(5,10),(6,7),(8,9)] => 8
[1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [(1,4),(2,3),(5,6),(7,10),(8,9)] => 8
[1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [(1,10),(2,5),(3,4),(6,9),(7,8)] => 7
[1,1,0,0,1,1,0,0,1,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [(1,10),(2,9),(3,8),(4,7),(5,6)] => 5
[1,1,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => [(1,6),(2,5),(3,4),(7,10),(8,9)] => 8
[1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,1,0,0,0] => [(1,4),(2,3),(5,10),(6,9),(7,8)] => 7
[1,1,0,1,0,0,1,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [(1,4),(2,3),(5,10),(6,7),(8,9)] => 8
[1,1,0,1,0,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [(1,10),(2,9),(3,6),(4,5),(7,8)] => 7
[1,1,0,1,0,1,0,0,1,0] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,0,0,1,0,1,0,0] => [(1,10),(2,5),(3,4),(6,7),(8,9)] => 8
[1,1,0,1,0,1,0,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [(1,4),(2,3),(5,6),(7,8),(9,10)] => 9
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,1,0,0,1,0,0,1,0] => [(1,8),(2,5),(3,4),(6,7),(9,10)] => 9
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [(1,8),(2,7),(3,6),(4,5),(9,10)] => 9
[1,1,0,1,1,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0] => [(1,10),(2,7),(3,6),(4,5),(8,9)] => 8
[1,1,0,1,1,0,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [(1,6),(2,5),(3,4),(7,8),(9,10)] => 9
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [(1,4),(2,3),(5,8),(6,7),(9,10)] => 9
[1,1,1,0,0,0,1,0,1,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => [(1,6),(2,3),(4,5),(7,10),(8,9)] => 8
[1,1,1,0,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => [1,1,1,0,1,1,0,0,0,0] => [(1,10),(2,9),(3,4),(5,8),(6,7)] => 6
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,10),(4,9),(5,8),(6,7)] => 6
[1,1,1,0,0,1,0,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,6),(4,5),(7,10),(8,9)] => 8
[1,1,1,0,0,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [(1,10),(2,3),(4,9),(5,8),(6,7)] => 6
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,8),(4,7),(5,6),(9,10)] => 9
[1,1,1,0,1,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0] => [(1,2),(3,10),(4,7),(5,6),(8,9)] => 8
[1,1,1,0,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,6),(4,5),(7,8),(9,10)] => 9
[1,1,1,0,1,1,0,0,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [(1,8),(2,3),(4,7),(5,6),(9,10)] => 9
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,0,1,0,0,0,1,0] => [1,1,0,1,0,1,1,0,0,0] => [(1,10),(2,3),(4,5),(6,9),(7,8)] => 7
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [(1,2),(3,10),(4,5),(6,9),(7,8)] => 7
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,10),(6,9),(7,8)] => 7
[1,1,1,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10)] => 9
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,10),(8,9)] => 8
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [(1,2),(3,4),(5,6),(7,8),(9,10),(11,12)] => 11
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => [(1,2),(3,4),(5,12),(6,7),(8,9),(10,11)] => 10
[1,0,1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [1,0,1,0,1,1,1,0,1,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,8),(9,10)] => 9
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [(1,2),(3,4),(5,10),(6,7),(8,9),(11,12)] => 11
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => [(1,2),(3,4),(5,6),(7,12),(8,9),(10,11)] => 10
[1,1,1,1,0,0,1,0,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [(1,2),(3,4),(5,12),(6,11),(7,10),(8,9)] => 8
[1,1,1,1,0,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [(1,2),(3,4),(5,8),(6,7),(9,12),(10,11)] => 10
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [(1,2),(3,4),(5,10),(6,9),(7,8),(11,12)] => 11
[1,1,1,1,0,1,0,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,1,0,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => [(1,2),(3,4),(5,12),(6,9),(7,8),(10,11)] => 10
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [(1,2),(3,4),(5,8),(6,7),(9,10),(11,12)] => 11
[1,1,1,1,1,0,0,0,1,0,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [(1,2),(3,4),(5,12),(6,7),(8,11),(9,10)] => 9
[1,1,1,1,1,0,0,1,0,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [(1,2),(3,4),(5,6),(7,12),(8,11),(9,10)] => 9
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [(1,2),(3,4),(5,6),(7,10),(8,9),(11,12)] => 11
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [(1,2),(3,4),(5,6),(7,8),(9,12),(10,11)] => 10
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The largest opener of a perfect matching.
An opener (or left hand endpoint) of a perfect matching is a number that is matched with a larger number, which is then called a closer (or right hand endpoint).
Map
Knuth-Krattenthaler
Description
The map that sends the Dyck path to a 321-avoiding permutation, then applies the Robinson-Schensted correspondence and finally interprets the first row of the insertion tableau and the second row of the recording tableau as up steps.
Interpreting a pair of two-row standard tableaux of the same shape as a Dyck path is explained by Knuth in [1, pp. 60].
Krattenthaler's bijection between Dyck paths and $321$-avoiding permutations used is Mp00119to 321-avoiding permutation (Krattenthaler), see [2].
This is the inverse of the map Mp00127left-to-right-maxima to Dyck path that interprets the left-to-right maxima of the permutation obtained from Mp00024to 321-avoiding permutation as a Dyck path.
Map
Lalanne-Kreweras involution
Description
The Lalanne-Kreweras involution on Dyck paths.
Label the upsteps from left to right and record the labels on the first up step of each double rise. Do the same for the downsteps. Then form the Dyck path whose ascent lengths and descent lengths are the consecutives differences of the labels.
Map
to tunnel matching
Description
Sends a Dyck path of semilength n to the noncrossing perfect matching given by matching an up-step with the corresponding down-step.
This is, for a Dyck path $D$ of semilength $n$, the perfect matching of $\{1,\dots,2n\}$ with $i < j$ being matched if $D_i$ is an up-step and $D_j$ is the down-step connected to $D_i$ by a tunnel.