Identifier
-
Mp00013:
Binary trees
—to poset⟶
Posets
St000849: Posets ⟶ ℤ
Values
[.,[.,.]] => ([(0,1)],2) => 0
[[.,.],.] => ([(0,1)],2) => 0
[.,[.,[.,.]]] => ([(0,2),(2,1)],3) => 0
[.,[[.,.],.]] => ([(0,2),(2,1)],3) => 0
[[.,.],[.,.]] => ([(0,2),(1,2)],3) => 1
[[.,[.,.]],.] => ([(0,2),(2,1)],3) => 0
[[[.,.],.],.] => ([(0,2),(2,1)],3) => 0
[.,[.,[.,[.,.]]]] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[.,[[.,.],.]]] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[[.,.],[.,.]]] => ([(0,3),(1,3),(3,2)],4) => 1
[.,[[.,[.,.]],.]] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[[[.,.],.],.]] => ([(0,3),(2,1),(3,2)],4) => 0
[[.,.],[.,[.,.]]] => ([(0,3),(1,2),(2,3)],4) => 2
[[.,.],[[.,.],.]] => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,.]],[.,.]] => ([(0,3),(1,2),(2,3)],4) => 2
[[[.,.],.],[.,.]] => ([(0,3),(1,2),(2,3)],4) => 2
[[.,[.,[.,.]]],.] => ([(0,3),(2,1),(3,2)],4) => 0
[[.,[[.,.],.]],.] => ([(0,3),(2,1),(3,2)],4) => 0
[[[.,.],[.,.]],.] => ([(0,3),(1,3),(3,2)],4) => 1
[[[.,[.,.]],.],.] => ([(0,3),(2,1),(3,2)],4) => 0
[[[[.,.],.],.],.] => ([(0,3),(2,1),(3,2)],4) => 0
[.,[.,[.,[.,[.,.]]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[.,[[.,.],.]]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[[.,.],[.,.]]]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[.,[.,[[.,[.,.]],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[[[.,.],.],.]]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[.,.],[.,[.,.]]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[.,.],[[.,.],.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[.,[.,.]],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[[.,.],.],[.,.]]] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[.,[[.,[.,[.,.]]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[.,[[.,.],.]],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[[.,.],[.,.]],.]] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[.,[[[.,[.,.]],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[[[[.,.],.],.],.]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,.],[.,[.,[.,.]]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[.,.],[.,[[.,.],.]]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[.,.],[[.,.],[.,.]]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 3
[[.,.],[[.,[.,.]],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[.,.],[[[.,.],.],.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[.,[.,.]],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[.,[.,.]],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[[.,.],.],[.,[.,.]]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[[.,.],.],[[.,.],.]] => ([(0,3),(1,2),(2,4),(3,4)],5) => 2
[[.,[.,[.,.]]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[.,[[.,.],.]],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[[.,.],[.,.]],[.,.]] => ([(0,4),(1,3),(2,3),(3,4)],5) => 3
[[[.,[.,.]],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[[[.,.],.],.],[.,.]] => ([(0,4),(1,2),(2,3),(3,4)],5) => 1
[[.,[.,[.,[.,.]]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,[.,[[.,.],.]]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,[[.,.],[.,.]]],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[[.,[[.,[.,.]],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[.,[[[.,.],.],.]],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[.,.],[.,[.,.]]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[.,.],[[.,.],.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[.,[.,.]],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[[.,.],.],[.,.]],.] => ([(0,4),(1,2),(2,4),(4,3)],5) => 2
[[[.,[.,[.,.]]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[.,[[.,.],.]],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[[.,.],[.,.]],.],.] => ([(0,4),(1,4),(2,3),(4,2)],5) => 1
[[[[.,[.,.]],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[[[[[.,.],.],.],.],.] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[.,[.,[.,[.,[.,[.,.]]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[.,[.,[[.,.],.]]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[.,[[.,.],[.,.]]]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[.,[.,[.,[[.,[.,.]],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[.,[[[.,.],.],.]]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[.,.],[.,[.,.]]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[.,[[.,.],[[.,.],.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[.,[[.,[.,.]],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[.,[[[.,.],.],[.,.]]]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[.,[[.,[.,[.,.]]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[.,[[.,.],.]],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[[.,.],[.,.]],.]]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[.,[.,[[[.,[.,.]],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[.,[[[[.,.],.],.],.]]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,.],[.,[.,[.,.]]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,.],[.,[[.,.],.]]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,.],[[.,.],[.,.]]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 3
[.,[[.,.],[[.,[.,.]],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,.],[[[.,.],.],.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,[.,.]],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 2
[.,[[.,[.,.]],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 2
[.,[[[.,.],.],[.,[.,.]]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 2
[.,[[[.,.],.],[[.,.],.]]] => ([(0,4),(1,3),(3,5),(4,5),(5,2)],6) => 2
[.,[[.,[.,[.,.]]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,[[.,.],.]],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[[.,.],[.,.]],[.,.]]] => ([(0,5),(1,4),(2,4),(4,5),(5,3)],6) => 3
[.,[[[.,[.,.]],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[[[.,.],.],.],[.,.]]] => ([(0,5),(1,4),(2,5),(4,2),(5,3)],6) => 1
[.,[[.,[.,[.,[.,.]]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,[.,[[.,.],.]]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,[[.,.],[.,.]]],.]] => ([(0,5),(1,5),(3,2),(4,3),(5,4)],6) => 1
[.,[[.,[[.,[.,.]],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[.,[[[.,.],.],.]],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[.,[[[.,.],[.,[.,.]]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[[[.,.],[[.,.],.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[[[.,[.,.]],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[[[[.,.],.],[.,.]],.]] => ([(0,5),(1,3),(3,5),(4,2),(5,4)],6) => 2
[.,[[[.,[.,[.,.]]],.],.]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
>>> Load all 312 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of 1/3-balanced pairs in a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$.
Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains.
Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a $1/3$-balanced pair.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$.
Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains.
Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a $1/3$-balanced pair.
Map
to poset
Description
Return the poset obtained by interpreting the tree as a Hasse diagram.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!