Loading [MathJax]/jax/output/HTML-CSS/jax.js

Identifier
Values
[1] => ([],1) => ([(0,1)],2) => ([(0,1)],2) => 0
[1,2] => ([(0,1)],2) => ([(0,2),(2,1)],3) => ([(0,2),(2,1)],3) => 0
[2,1] => ([],2) => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,2,3] => ([(0,2),(2,1)],3) => ([(0,3),(2,1),(3,2)],4) => ([(0,3),(2,1),(3,2)],4) => 0
[1,3,2] => ([(0,1),(0,2)],3) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 1
[2,1,3] => ([(0,2),(1,2)],3) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 1
[2,3,1] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[3,1,2] => ([(1,2)],3) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,2,3,4] => ([(0,3),(2,1),(3,2)],4) => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,2,4,3] => ([(0,3),(3,1),(3,2)],4) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 1
[1,3,2,4] => ([(0,1),(0,2),(1,3),(2,3)],4) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 1
[2,1,3,4] => ([(0,3),(1,3),(3,2)],4) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 1
[2,1,4,3] => ([(0,2),(0,3),(1,2),(1,3)],4) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 2
[1,2,3,4,5] => ([(0,4),(2,3),(3,1),(4,2)],5) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
[1,2,4,3,5] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 1
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
Description
The number of 1/3-balanced pairs in a poset.
A pair of elements x,y of a poset is α-balanced if the proportion of linear extensions where x comes before y is between α and 1α.
Kislitsyn [1] conjectured that every poset which is not a chain has a 1/3-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a (15)/10-balanced pair exists in posets which are not chains.
Olson and Sagan [3] show that posets corresponding to skew Ferrers diagrams have a 1/3-balanced pair.
Map
order ideals
Description
The lattice of order ideals of a poset.
An order ideal I in a poset P is a downward closed set, i.e., aI and ba implies bI. This map sends a poset to the lattice of all order ideals sorted by inclusion with meet being intersection and join being union.
Map
to poset
Description
Return the poset corresponding to the lattice.
Map
permutation poset
Description
Sends a permutation to its permutation poset.
For a permutation π of length n, this poset has vertices
{(i,π(i)) : 1in}
and the cover relation is given by (w,x)(y,z) if wy and xz.
For example, the permutation [3,1,5,4,2] is mapped to the poset with cover relations
{(2,1)(5,2), (2,1)(4,4), (2,1)(3,5), (1,3)(4,4), (1,3)(3,5)}.