Identifier
Values
[1,1,0,0] => [[0,1],[1,0]] => [[1,2],[2]] => ([(0,1)],2) => 0
[1,0,1,1,0,0] => [[1,0,0],[0,0,1],[0,1,0]] => [[1,1,1],[2,3],[3]] => ([(0,1)],2) => 0
[1,1,0,0,1,0] => [[0,1,0],[1,0,0],[0,0,1]] => [[1,1,2],[2,2],[3]] => ([(0,1)],2) => 0
[1,1,0,1,0,0] => [[0,1,0],[1,-1,1],[0,1,0]] => [[1,1,2],[2,3],[3]] => ([(0,2),(2,1)],3) => 0
[1,0,1,0,1,1,0,0] => [[1,0,0,0],[0,1,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,1],[2,2,2],[3,4],[4]] => ([(0,1)],2) => 0
[1,0,1,1,0,0,1,0] => [[1,0,0,0],[0,0,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,1],[2,2,3],[3,3],[4]] => ([(0,1)],2) => 0
[1,0,1,1,0,1,0,0] => [[1,0,0,0],[0,0,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,1],[2,2,3],[3,4],[4]] => ([(0,2),(2,1)],3) => 0
[1,1,0,0,1,0,1,0] => [[0,1,0,0],[1,0,0,0],[0,0,1,0],[0,0,0,1]] => [[1,1,1,2],[2,2,2],[3,3],[4]] => ([(0,1)],2) => 0
[1,1,0,0,1,1,0,0] => [[0,1,0,0],[1,0,0,0],[0,0,0,1],[0,0,1,0]] => [[1,1,1,2],[2,2,2],[3,4],[4]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,1,0,0,1,0] => [[0,1,0,0],[1,-1,1,0],[0,1,0,0],[0,0,0,1]] => [[1,1,1,2],[2,2,3],[3,3],[4]] => ([(0,2),(2,1)],3) => 0
[1,1,0,1,0,1,0,0] => [[0,1,0,0],[1,-1,1,0],[0,1,-1,1],[0,0,1,0]] => [[1,1,1,2],[2,2,3],[3,4],[4]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,2],[3,3,3],[4,5],[5]] => ([(0,1)],2) => 0
[1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,4],[5]] => ([(0,1)],2) => 0
[1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,2],[3,3,4],[4,5],[5]] => ([(0,2),(2,1)],3) => 0
[1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,4],[5]] => ([(0,1)],2) => 0
[1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,3],[4,5],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,4],[5]] => ([(0,2),(2,1)],3) => 0
[1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0],[0,0,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,1],[2,2,2,3],[3,3,4],[4,5],[5]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,4],[5]] => ([(0,1)],2) => 0
[1,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,1,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,3],[4,5],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,4],[5]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0,1,1,0,1,0,0] => [[0,1,0,0,0],[1,0,0,0,0],[0,0,0,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,2],[3,3,4],[4,5],[5]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,1,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,4],[5]] => ([(0,2),(2,1)],3) => 0
[1,1,0,1,0,0,1,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,0,0,0],[0,0,0,0,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,3],[3,3,3],[4,5],[5]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,0,0],[0,0,0,0,1]] => [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,4],[5]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0],[1,-1,1,0,0],[0,1,-1,1,0],[0,0,1,-1,1],[0,0,0,1,0]] => [[1,1,1,1,2],[2,2,2,3],[3,3,4],[4,5],[5]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,0,1,0,1,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,1)],2) => 0
[1,0,1,0,1,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,1)],2) => 0
[1,0,1,0,1,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]] => ([(0,2),(2,1)],3) => 0
[1,0,1,0,1,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,1)],2) => 0
[1,0,1,0,1,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,6],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,0,1,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,2),(2,1)],3) => 0
[1,0,1,0,1,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,6],[6]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,1,0,0,1,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]] => ([(0,1)],2) => 0
[1,0,1,1,0,0,1,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,1,0,0,1,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,0,1,1,0,0,1,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,0,1,1,0,1,0,0,1,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,2),(2,1)],3) => 0
[1,0,1,1,0,1,0,0,1,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,0,1,1,0,1,0,1,0,0,1,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,0,1,1,0,1,0,1,0,1,0,0] => [[1,0,0,0,0,0],[0,0,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,1],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,0,1,0,1,0,1,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,5],[6]] => ([(0,1)],2) => 0
[1,1,0,0,1,0,1,0,1,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0,1,0,1,1,0,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0,1,0,1,1,0,1,0,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,3],[4,4,5],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,0,1,1,0,0,1,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,1),(0,2),(1,3),(2,3)],4) => 1
[1,1,0,0,1,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,0,0,0,0,0],[0,0,0,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,2],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,1,0,0,1,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,5],[6]] => ([(0,2),(2,1)],3) => 0
[1,1,0,1,0,0,1,0,1,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,4],[5,6],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,1,0,0,1,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,0,0,0,0],[0,0,0,0,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,3],[4,4,5],[5,5],[6]] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 0
[1,1,0,1,0,1,0,0,1,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,0,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,4],[5,5],[6]] => ([(0,3),(2,1),(3,2)],4) => 0
[1,1,0,1,0,1,0,1,0,0,1,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,0,0],[0,0,0,0,0,1]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,5],[6]] => ([(0,4),(2,3),(3,1),(4,2)],5) => 0
[1,1,0,1,0,1,0,1,0,1,0,0] => [[0,1,0,0,0,0],[1,-1,1,0,0,0],[0,1,-1,1,0,0],[0,0,1,-1,1,0],[0,0,0,1,-1,1],[0,0,0,0,1,0]] => [[1,1,1,1,1,2],[2,2,2,2,3],[3,3,3,4],[4,4,5],[5,6],[6]] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 0
search for individual values
searching the database for the individual values of this statistic
Description
The number of 1/2-balanced pairs in a poset.
A pair of elements $x,y$ of a poset is $\alpha$-balanced if the proportion of linear extensions where $x$ comes before $y$ is between $\alpha$ and $1-\alpha$.
Kislitsyn [1] conjectured that every poset which is not a chain has a $1/3$-balanced pair. Brightwell, Felsner and Trotter [2] show that at least a $(1-\sqrt 5)/10$-balanced pair exists in posets which are not chains.
Olson and Sagan [3] exhibit various posets that have a $1/2$-balanced pair.
Map
subcrystal
Description
The underlying poset of the subcrystal obtained by applying the raising operators to a semistandard tableau.
Map
to semistandard tableau via monotone triangles
Description
The semistandard tableau corresponding the monotone triangle of an alternating sign matrix.
This is obtained by interpreting each row of the monotone triangle as an integer partition, and filling the cells of the smallest partition with ones, the second smallest with twos, and so on.
Map
to symmetric ASM
Description
The diagonally symmetric alternating sign matrix corresponding to a Dyck path.