Identifier
- St000851: Finite Cartan types ⟶ ℤ
Values
=>
Cc0022;cc-rep
['A',1]=>4
['A',2]=>22
['B',2]=>28
['G',2]=>40
['A',3]=>140
['B',3]=>220
['C',3]=>220
['A',4]=>969
['B',4]=>1820
['C',4]=>1820
['D',4]=>1210
['F',4]=>2926
['A',5]=>7084
['B',5]=>15504
['C',5]=>15504
['D',5]=>10556
['A',6]=>53820
['B',6]=>134596
['C',6]=>134596
['D',6]=>93024
['E',6]=>119966
['A',7]=>420732
['B',7]=>1184040
['C',7]=>1184040
['D',7]=>826804
['E',7]=>1484032
['A',8]=>3362260
['B',8]=>10518300
['C',8]=>10518300
['D',8]=>7400250
['E',8]=>22309287
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The third Fuss-Catalan number of a finite Cartan type.
The Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh) = \prod \frac{d_i+mh}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
The Fuss-Catalan numbers of a finite Cartan type are given by
$$\frac{1}{|W|}\prod (d_i+mh) = \prod \frac{d_i+mh}{d_i}$$
where the products run over all degrees of homoneneous fundamenal invariants of the Weyl group of a Cartan type.
Code
def statistic(cartan_type): W = ReflectionGroup(cartan_type) return W.fuss_catalan_number(3)
Created
Jun 25, 2017 at 10:11 by Christian Stump
Updated
Jun 25, 2017 at 10:11 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!