Identifier
Values
[1,0] => [1,1,0,0] => [2,3,1] => [1,2,3] => 0
[1,0,1,0] => [1,1,0,1,0,0] => [4,3,1,2] => [1,4,2,3] => 0
[1,1,0,0] => [1,1,1,0,0,0] => [2,3,4,1] => [1,2,3,4] => 0
[1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => [5,4,1,2,3] => [1,5,3,2,4] => 1
[1,0,1,1,0,0] => [1,1,0,1,1,0,0,0] => [4,3,1,5,2] => [1,4,5,2,3] => 0
[1,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [2,5,4,1,3] => [1,2,5,3,4] => 0
[1,1,0,1,0,0] => [1,1,1,0,1,0,0,0] => [5,3,4,1,2] => [1,5,2,3,4] => 0
[1,1,1,0,0,0] => [1,1,1,1,0,0,0,0] => [2,3,4,5,1] => [1,2,3,4,5] => 0
[1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => [5,6,1,2,3,4] => [1,5,3,2,6,4] => 1
[1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => [5,4,1,2,6,3] => [1,5,6,3,2,4] => 1
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [6,3,1,5,2,4] => [1,6,4,5,2,3] => 1
[1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,1,0,0,0] => [6,4,1,5,2,3] => [1,6,3,2,4,5] => 1
[1,0,1,1,1,0,0,0] => [1,1,0,1,1,1,0,0,0,0] => [4,3,1,5,6,2] => [1,4,5,6,2,3] => 0
[1,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => [2,6,5,1,3,4] => [1,2,6,4,3,5] => 1
[1,1,0,0,1,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => [2,5,4,1,6,3] => [1,2,5,6,3,4] => 0
[1,1,0,1,0,0,1,0] => [1,1,1,0,1,0,0,1,0,0] => [6,3,5,1,2,4] => [1,6,4,2,3,5] => 1
[1,1,0,1,0,1,0,0] => [1,1,1,0,1,0,1,0,0,0] => [6,5,4,1,2,3] => [1,6,3,4,2,5] => 1
[1,1,0,1,1,0,0,0] => [1,1,1,0,1,1,0,0,0,0] => [5,3,4,1,6,2] => [1,5,6,2,3,4] => 0
[1,1,1,0,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [2,3,6,5,1,4] => [1,2,3,6,4,5] => 0
[1,1,1,0,0,1,0,0] => [1,1,1,1,0,0,1,0,0,0] => [2,6,4,5,1,3] => [1,2,6,3,4,5] => 0
[1,1,1,0,1,0,0,0] => [1,1,1,1,0,1,0,0,0,0] => [6,3,4,5,1,2] => [1,6,2,3,4,5] => 0
[1,1,1,1,0,0,0,0] => [1,1,1,1,1,0,0,0,0,0] => [2,3,4,5,6,1] => [1,2,3,4,5,6] => 0
[1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,1,1,1,0,0,0,0,0] => [4,3,1,5,6,7,2] => [1,4,5,6,7,2,3] => 0
[1,1,0,0,1,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,1,0,0] => [2,6,7,1,3,4,5] => [1,2,6,4,3,7,5] => 1
[1,1,0,0,1,0,1,1,0,0] => [1,1,1,0,0,1,0,1,1,0,0,0] => [2,6,5,1,3,7,4] => [1,2,6,7,4,3,5] => 1
[1,1,0,0,1,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,1,0,0] => [2,7,4,1,6,3,5] => [1,2,7,5,6,3,4] => 1
[1,1,0,0,1,1,0,1,0,0] => [1,1,1,0,0,1,1,0,1,0,0,0] => [2,7,5,1,6,3,4] => [1,2,7,4,3,5,6] => 1
[1,1,0,0,1,1,1,0,0,0] => [1,1,1,0,0,1,1,1,0,0,0,0] => [2,5,4,1,6,7,3] => [1,2,5,6,7,3,4] => 0
[1,1,1,0,0,0,1,0,1,0] => [1,1,1,1,0,0,0,1,0,1,0,0] => [2,3,7,6,1,4,5] => [1,2,3,7,5,4,6] => 1
[1,1,1,0,0,0,1,1,0,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [2,3,6,5,1,7,4] => [1,2,3,6,7,4,5] => 0
[1,1,1,0,0,1,0,0,1,0] => [1,1,1,1,0,0,1,0,0,1,0,0] => [2,7,4,6,1,3,5] => [1,2,7,5,3,4,6] => 1
[1,1,1,0,0,1,0,1,0,0] => [1,1,1,1,0,0,1,0,1,0,0,0] => [2,7,6,5,1,3,4] => [1,2,7,4,5,3,6] => 1
[1,1,1,0,0,1,1,0,0,0] => [1,1,1,1,0,0,1,1,0,0,0,0] => [2,6,4,5,1,7,3] => [1,2,6,7,3,4,5] => 0
[1,1,1,1,0,0,0,0,1,0] => [1,1,1,1,1,0,0,0,0,1,0,0] => [2,3,4,7,6,1,5] => [1,2,3,4,7,5,6] => 0
[1,1,1,1,0,0,0,1,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => [2,3,7,5,6,1,4] => [1,2,3,7,4,5,6] => 0
[1,1,1,1,0,0,1,0,0,0] => [1,1,1,1,1,0,0,1,0,0,0,0] => [2,7,4,5,6,1,3] => [1,2,7,3,4,5,6] => 0
[1,1,1,1,1,0,0,0,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [2,3,4,5,6,7,1] => [1,2,3,4,5,6,7] => 0
[] => [1,0] => [2,1] => [1,2] => 0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of circled entries of the shifted recording tableau of a permutation.
The diagram of a strict partition $\lambda_1 < \lambda_2 < \dots < \lambda_\ell$ of $n$ is a tableau with $\ell$ rows, the $i$-th row being indented by $i$ cells. A shifted standard Young tableau is a filling of such a diagram, where entries in rows and columns are strictly increasing.
The shifted Robinson-Schensted algorithm [1] associates to a permutation a pair $(P, Q)$ of standard shifted Young tableaux of the same shape, where off-diagonal entries in $Q$ may be circled.
This statistic records the number of circled entries in $Q$.
Map
prime Dyck path
Description
Return the Dyck path obtained by adding an initial up and a final down step.
Map
cycle-as-one-line notation
Description
Return the permutation obtained by concatenating the cycles of a permutation, each written with minimal element first, sorted by minimal element.
Map
Ringel
Description
The Ringel permutation of the LNakayama algebra corresponding to a Dyck path.