Identifier
- St000886: Permutations ⟶ ℤ
Values
=>
[1,2]=>1
[2,1]=>1
[1,2,3]=>1
[1,3,2]=>1
[2,1,3]=>1
[2,3,1]=>2
[3,1,2]=>2
[3,2,1]=>1
[1,2,3,4]=>1
[1,2,4,3]=>1
[1,3,2,4]=>1
[1,3,4,2]=>2
[1,4,2,3]=>2
[1,4,3,2]=>1
[2,1,3,4]=>1
[2,1,4,3]=>1
[2,3,1,4]=>2
[2,3,4,1]=>2
[2,4,1,3]=>2
[2,4,3,1]=>2
[3,1,2,4]=>2
[3,1,4,2]=>2
[3,2,1,4]=>1
[3,2,4,1]=>2
[3,4,1,2]=>1
[3,4,2,1]=>3
[4,1,2,3]=>2
[4,1,3,2]=>2
[4,2,1,3]=>2
[4,2,3,1]=>3
[4,3,1,2]=>3
[4,3,2,1]=>1
[1,2,3,4,5]=>1
[1,2,3,5,4]=>1
[1,2,4,3,5]=>1
[1,2,4,5,3]=>2
[1,2,5,3,4]=>2
[1,2,5,4,3]=>1
[1,3,2,4,5]=>1
[1,3,2,5,4]=>1
[1,3,4,2,5]=>2
[1,3,4,5,2]=>2
[1,3,5,2,4]=>2
[1,3,5,4,2]=>2
[1,4,2,3,5]=>2
[1,4,2,5,3]=>2
[1,4,3,2,5]=>1
[1,4,3,5,2]=>2
[1,4,5,2,3]=>1
[1,4,5,3,2]=>3
[1,5,2,3,4]=>2
[1,5,2,4,3]=>2
[1,5,3,2,4]=>2
[1,5,3,4,2]=>3
[1,5,4,2,3]=>3
[1,5,4,3,2]=>1
[2,1,3,4,5]=>1
[2,1,3,5,4]=>1
[2,1,4,3,5]=>1
[2,1,4,5,3]=>2
[2,1,5,3,4]=>2
[2,1,5,4,3]=>1
[2,3,1,4,5]=>2
[2,3,1,5,4]=>2
[2,3,4,1,5]=>2
[2,3,4,5,1]=>4
[2,3,5,1,4]=>2
[2,3,5,4,1]=>4
[2,4,1,3,5]=>2
[2,4,1,5,3]=>2
[2,4,3,1,5]=>2
[2,4,3,5,1]=>2
[2,4,5,1,3]=>4
[2,4,5,3,1]=>4
[2,5,1,3,4]=>2
[2,5,1,4,3]=>2
[2,5,3,1,4]=>4
[2,5,3,4,1]=>4
[2,5,4,1,3]=>2
[2,5,4,3,1]=>2
[3,1,2,4,5]=>2
[3,1,2,5,4]=>2
[3,1,4,2,5]=>2
[3,1,4,5,2]=>2
[3,1,5,2,4]=>2
[3,1,5,4,2]=>2
[3,2,1,4,5]=>1
[3,2,1,5,4]=>1
[3,2,4,1,5]=>2
[3,2,4,5,1]=>4
[3,2,5,1,4]=>2
[3,2,5,4,1]=>2
[3,4,1,2,5]=>1
[3,4,1,5,2]=>4
[3,4,2,1,5]=>3
[3,4,2,5,1]=>4
[3,4,5,1,2]=>6
[3,4,5,2,1]=>3
[3,5,1,2,4]=>4
[3,5,1,4,2]=>1
[3,5,2,1,4]=>2
[3,5,2,4,1]=>6
[3,5,4,1,2]=>2
[3,5,4,2,1]=>3
[4,1,2,3,5]=>2
[4,1,2,5,3]=>2
[4,1,3,2,5]=>2
[4,1,3,5,2]=>4
[4,1,5,2,3]=>4
[4,1,5,3,2]=>2
[4,2,1,3,5]=>2
[4,2,1,5,3]=>2
[4,2,3,1,5]=>3
[4,2,3,5,1]=>4
[4,2,5,1,3]=>1
[4,2,5,3,1]=>6
[4,3,1,2,5]=>3
[4,3,1,5,2]=>2
[4,3,2,1,5]=>1
[4,3,2,5,1]=>2
[4,3,5,1,2]=>2
[4,3,5,2,1]=>3
[4,5,1,2,3]=>6
[4,5,1,3,2]=>2
[4,5,2,1,3]=>2
[4,5,2,3,1]=>3
[4,5,3,1,2]=>3
[4,5,3,2,1]=>4
[5,1,2,3,4]=>4
[5,1,2,4,3]=>4
[5,1,3,2,4]=>2
[5,1,3,4,2]=>4
[5,1,4,2,3]=>4
[5,1,4,3,2]=>2
[5,2,1,3,4]=>4
[5,2,1,4,3]=>2
[5,2,3,1,4]=>4
[5,2,3,4,1]=>3
[5,2,4,1,3]=>6
[5,2,4,3,1]=>3
[5,3,1,2,4]=>4
[5,3,1,4,2]=>6
[5,3,2,1,4]=>2
[5,3,2,4,1]=>3
[5,3,4,1,2]=>3
[5,3,4,2,1]=>4
[5,4,1,2,3]=>3
[5,4,1,3,2]=>3
[5,4,2,1,3]=>3
[5,4,2,3,1]=>4
[5,4,3,1,2]=>4
[5,4,3,2,1]=>1
[1,2,3,4,5,6]=>1
[1,2,3,4,6,5]=>1
[1,2,3,5,4,6]=>1
[1,2,3,5,6,4]=>2
[1,2,3,6,4,5]=>2
[1,2,3,6,5,4]=>1
[1,2,4,3,5,6]=>1
[1,2,4,3,6,5]=>1
[1,2,4,5,3,6]=>2
[1,2,4,5,6,3]=>2
[1,2,4,6,3,5]=>2
[1,2,4,6,5,3]=>2
[1,2,5,3,4,6]=>2
[1,2,5,3,6,4]=>2
[1,2,5,4,3,6]=>1
[1,2,5,4,6,3]=>2
[1,2,5,6,3,4]=>1
[1,2,5,6,4,3]=>3
[1,2,6,3,4,5]=>2
[1,2,6,3,5,4]=>2
[1,2,6,4,3,5]=>2
[1,2,6,4,5,3]=>3
[1,2,6,5,3,4]=>3
[1,2,6,5,4,3]=>1
[1,3,2,4,5,6]=>1
[1,3,2,4,6,5]=>1
[1,3,2,5,4,6]=>1
[1,3,2,5,6,4]=>2
[1,3,2,6,4,5]=>2
[1,3,2,6,5,4]=>1
[1,3,4,2,5,6]=>2
[1,3,4,2,6,5]=>2
[1,3,4,5,2,6]=>2
[1,3,4,5,6,2]=>4
[1,3,4,6,2,5]=>2
[1,3,4,6,5,2]=>4
[1,3,5,2,4,6]=>2
[1,3,5,2,6,4]=>2
[1,3,5,4,2,6]=>2
[1,3,5,4,6,2]=>2
[1,3,5,6,2,4]=>4
[1,3,5,6,4,2]=>4
[1,3,6,2,4,5]=>2
[1,3,6,2,5,4]=>2
[1,3,6,4,2,5]=>4
[1,3,6,4,5,2]=>4
[1,3,6,5,2,4]=>2
[1,3,6,5,4,2]=>2
[1,4,2,3,5,6]=>2
[1,4,2,3,6,5]=>2
[1,4,2,5,3,6]=>2
[1,4,2,5,6,3]=>2
[1,4,2,6,3,5]=>2
[1,4,2,6,5,3]=>2
[1,4,3,2,5,6]=>1
[1,4,3,2,6,5]=>1
[1,4,3,5,2,6]=>2
[1,4,3,5,6,2]=>4
[1,4,3,6,2,5]=>2
[1,4,3,6,5,2]=>2
[1,4,5,2,3,6]=>1
[1,4,5,2,6,3]=>4
[1,4,5,3,2,6]=>3
[1,4,5,3,6,2]=>4
[1,4,5,6,2,3]=>6
[1,4,5,6,3,2]=>3
[1,4,6,2,3,5]=>4
[1,4,6,2,5,3]=>1
[1,4,6,3,2,5]=>2
[1,4,6,3,5,2]=>6
[1,4,6,5,2,3]=>2
[1,4,6,5,3,2]=>3
[1,5,2,3,4,6]=>2
[1,5,2,3,6,4]=>2
[1,5,2,4,3,6]=>2
[1,5,2,4,6,3]=>4
[1,5,2,6,3,4]=>4
[1,5,2,6,4,3]=>2
[1,5,3,2,4,6]=>2
[1,5,3,2,6,4]=>2
[1,5,3,4,2,6]=>3
[1,5,3,4,6,2]=>4
[1,5,3,6,2,4]=>1
[1,5,3,6,4,2]=>6
[1,5,4,2,3,6]=>3
[1,5,4,2,6,3]=>2
[1,5,4,3,2,6]=>1
[1,5,4,3,6,2]=>2
[1,5,4,6,2,3]=>2
[1,5,4,6,3,2]=>3
[1,5,6,2,3,4]=>6
[1,5,6,2,4,3]=>2
[1,5,6,3,2,4]=>2
[1,5,6,3,4,2]=>3
[1,5,6,4,2,3]=>3
[1,5,6,4,3,2]=>4
[1,6,2,3,4,5]=>4
[1,6,2,3,5,4]=>4
[1,6,2,4,3,5]=>2
[1,6,2,4,5,3]=>4
[1,6,2,5,3,4]=>4
[1,6,2,5,4,3]=>2
[1,6,3,2,4,5]=>4
[1,6,3,2,5,4]=>2
[1,6,3,4,2,5]=>4
[1,6,3,4,5,2]=>3
[1,6,3,5,2,4]=>6
[1,6,3,5,4,2]=>3
[1,6,4,2,3,5]=>4
[1,6,4,2,5,3]=>6
[1,6,4,3,2,5]=>2
[1,6,4,3,5,2]=>3
[1,6,4,5,2,3]=>3
[1,6,4,5,3,2]=>4
[1,6,5,2,3,4]=>3
[1,6,5,2,4,3]=>3
[1,6,5,3,2,4]=>3
[1,6,5,3,4,2]=>4
[1,6,5,4,2,3]=>4
[1,6,5,4,3,2]=>1
[2,1,3,4,5,6]=>1
[2,1,3,4,6,5]=>1
[2,1,3,5,4,6]=>1
[2,1,3,5,6,4]=>2
[2,1,3,6,4,5]=>2
[2,1,3,6,5,4]=>1
[2,1,4,3,5,6]=>1
[2,1,4,3,6,5]=>1
[2,1,4,5,3,6]=>2
[2,1,4,5,6,3]=>2
[2,1,4,6,3,5]=>2
[2,1,4,6,5,3]=>2
[2,1,5,3,4,6]=>2
[2,1,5,3,6,4]=>2
[2,1,5,4,3,6]=>1
[2,1,5,4,6,3]=>2
[2,1,5,6,3,4]=>1
[2,1,5,6,4,3]=>3
[2,1,6,3,4,5]=>2
[2,1,6,3,5,4]=>2
[2,1,6,4,3,5]=>2
[2,1,6,4,5,3]=>3
[2,1,6,5,3,4]=>3
[2,1,6,5,4,3]=>1
[2,3,1,4,5,6]=>2
[2,3,1,4,6,5]=>2
[2,3,1,5,4,6]=>2
[2,3,1,5,6,4]=>4
[2,3,1,6,4,5]=>4
[2,3,1,6,5,4]=>2
[2,3,4,1,5,6]=>2
[2,3,4,1,6,5]=>2
[2,3,4,5,1,6]=>4
[2,3,4,5,6,1]=>4
[2,3,4,6,1,5]=>4
[2,3,4,6,5,1]=>2
[2,3,5,1,4,6]=>2
[2,3,5,1,6,4]=>2
[2,3,5,4,1,6]=>4
[2,3,5,4,6,1]=>4
[2,3,5,6,1,4]=>4
[2,3,5,6,4,1]=>8
[2,3,6,1,4,5]=>2
[2,3,6,1,5,4]=>2
[2,3,6,4,1,5]=>8
[2,3,6,4,5,1]=>8
[2,3,6,5,1,4]=>4
[2,3,6,5,4,1]=>4
[2,4,1,3,5,6]=>2
[2,4,1,3,6,5]=>2
[2,4,1,5,3,6]=>2
[2,4,1,5,6,3]=>2
[2,4,1,6,3,5]=>2
[2,4,1,6,5,3]=>2
[2,4,3,1,5,6]=>2
[2,4,3,1,6,5]=>2
[2,4,3,5,1,6]=>2
[2,4,3,5,6,1]=>4
[2,4,3,6,1,5]=>2
[2,4,3,6,5,1]=>4
[2,4,5,1,3,6]=>4
[2,4,5,1,6,3]=>8
[2,4,5,3,1,6]=>4
[2,4,5,3,6,1]=>6
[2,4,5,6,1,3]=>4
[2,4,5,6,3,1]=>6
[2,4,6,1,3,5]=>8
[2,4,6,1,5,3]=>4
[2,4,6,3,1,5]=>4
[2,4,6,3,5,1]=>8
[2,4,6,5,1,3]=>2
[2,4,6,5,3,1]=>8
[2,5,1,3,4,6]=>2
[2,5,1,3,6,4]=>2
[2,5,1,4,3,6]=>2
[2,5,1,4,6,3]=>4
[2,5,1,6,3,4]=>4
[2,5,1,6,4,3]=>2
[2,5,3,1,4,6]=>4
[2,5,3,1,6,4]=>4
[2,5,3,4,1,6]=>4
[2,5,3,4,6,1]=>6
[2,5,3,6,1,4]=>4
[2,5,3,6,4,1]=>8
[2,5,4,1,3,6]=>2
[2,5,4,1,6,3]=>4
[2,5,4,3,1,6]=>2
[2,5,4,3,6,1]=>2
[2,5,4,6,1,3]=>8
[2,5,4,6,3,1]=>4
[2,5,6,1,3,4]=>8
[2,5,6,1,4,3]=>4
[2,5,6,3,1,4]=>8
[2,5,6,3,4,1]=>2
[2,5,6,4,1,3]=>8
[2,5,6,4,3,1]=>6
[2,6,1,3,4,5]=>4
[2,6,1,3,5,4]=>4
[2,6,1,4,3,5]=>2
[2,6,1,4,5,3]=>4
[2,6,1,5,3,4]=>4
[2,6,1,5,4,3]=>2
[2,6,3,1,4,5]=>8
[2,6,3,1,5,4]=>4
[2,6,3,4,1,5]=>2
[2,6,3,4,5,1]=>6
[2,6,3,5,1,4]=>4
[2,6,3,5,4,1]=>8
[2,6,4,1,3,5]=>4
[2,6,4,1,5,3]=>8
[2,6,4,3,1,5]=>6
[2,6,4,3,5,1]=>4
[2,6,4,5,1,3]=>8
[2,6,4,5,3,1]=>6
[2,6,5,1,3,4]=>2
[2,6,5,1,4,3]=>2
[2,6,5,3,1,4]=>6
[2,6,5,3,4,1]=>6
[2,6,5,4,1,3]=>2
[2,6,5,4,3,1]=>2
[3,1,2,4,5,6]=>2
[3,1,2,4,6,5]=>2
[3,1,2,5,4,6]=>2
[3,1,2,5,6,4]=>4
[3,1,2,6,4,5]=>4
[3,1,2,6,5,4]=>2
[3,1,4,2,5,6]=>2
[3,1,4,2,6,5]=>2
[3,1,4,5,2,6]=>2
[3,1,4,5,6,2]=>4
[3,1,4,6,2,5]=>2
[3,1,4,6,5,2]=>4
[3,1,5,2,4,6]=>2
[3,1,5,2,6,4]=>2
[3,1,5,4,2,6]=>2
[3,1,5,4,6,2]=>2
[3,1,5,6,2,4]=>4
[3,1,5,6,4,2]=>4
[3,1,6,2,4,5]=>2
[3,1,6,2,5,4]=>2
[3,1,6,4,2,5]=>4
[3,1,6,4,5,2]=>4
[3,1,6,5,2,4]=>2
[3,1,6,5,4,2]=>2
[3,2,1,4,5,6]=>1
[3,2,1,4,6,5]=>1
[3,2,1,5,4,6]=>1
[3,2,1,5,6,4]=>2
[3,2,1,6,4,5]=>2
[3,2,1,6,5,4]=>1
[3,2,4,1,5,6]=>2
[3,2,4,1,6,5]=>2
[3,2,4,5,1,6]=>4
[3,2,4,5,6,1]=>2
[3,2,4,6,1,5]=>4
[3,2,4,6,5,1]=>3
[3,2,5,1,4,6]=>2
[3,2,5,1,6,4]=>2
[3,2,5,4,1,6]=>2
[3,2,5,4,6,1]=>4
[3,2,5,6,1,4]=>4
[3,2,5,6,4,1]=>6
[3,2,6,1,4,5]=>2
[3,2,6,1,5,4]=>2
[3,2,6,4,1,5]=>4
[3,2,6,4,5,1]=>6
[3,2,6,5,1,4]=>2
[3,2,6,5,4,1]=>2
[3,4,1,2,5,6]=>1
[3,4,1,2,6,5]=>1
[3,4,1,5,2,6]=>4
[3,4,1,5,6,2]=>4
[3,4,1,6,2,5]=>4
[3,4,1,6,5,2]=>4
[3,4,2,1,5,6]=>3
[3,4,2,1,6,5]=>3
[3,4,2,5,1,6]=>4
[3,4,2,5,6,1]=>8
[3,4,2,6,1,5]=>4
[3,4,2,6,5,1]=>6
[3,4,5,1,2,6]=>6
[3,4,5,1,6,2]=>4
[3,4,5,2,1,6]=>3
[3,4,5,2,6,1]=>6
[3,4,5,6,1,2]=>4
[3,4,5,6,2,1]=>9
[3,4,6,1,2,5]=>8
[3,4,6,1,5,2]=>6
[3,4,6,2,1,5]=>2
[3,4,6,2,5,1]=>8
[3,4,6,5,1,2]=>3
[3,4,6,5,2,1]=>7
[3,5,1,2,4,6]=>4
[3,5,1,2,6,4]=>4
[3,5,1,4,2,6]=>1
[3,5,1,4,6,2]=>4
[3,5,1,6,2,4]=>3
[3,5,1,6,4,2]=>6
[3,5,2,1,4,6]=>2
[3,5,2,1,6,4]=>2
[3,5,2,4,1,6]=>6
[3,5,2,4,6,1]=>8
[3,5,2,6,1,4]=>6
[3,5,2,6,4,1]=>6
[3,5,4,1,2,6]=>2
[3,5,4,1,6,2]=>8
[3,5,4,2,1,6]=>3
[3,5,4,2,6,1]=>4
[3,5,4,6,1,2]=>9
[3,5,4,6,2,1]=>3
[3,5,6,1,2,4]=>6
[3,5,6,1,4,2]=>6
[3,5,6,2,1,4]=>8
[3,5,6,2,4,1]=>7
[3,5,6,4,1,2]=>8
[3,5,6,4,2,1]=>6
[3,6,1,2,4,5]=>4
[3,6,1,2,5,4]=>4
[3,6,1,4,2,5]=>4
[3,6,1,4,5,2]=>1
[3,6,1,5,2,4]=>6
[3,6,1,5,4,2]=>1
[3,6,2,1,4,5]=>4
[3,6,2,1,5,4]=>2
[3,6,2,4,1,5]=>4
[3,6,2,4,5,1]=>8
[3,6,2,5,1,4]=>6
[3,6,2,5,4,1]=>6
[3,6,4,1,2,5]=>8
[3,6,4,1,5,2]=>8
[3,6,4,2,1,5]=>6
[3,6,4,2,5,1]=>9
[3,6,4,5,1,2]=>8
[3,6,4,5,2,1]=>6
[3,6,5,1,2,4]=>8
[3,6,5,1,4,2]=>2
[3,6,5,2,1,4]=>4
[3,6,5,2,4,1]=>8
[3,6,5,4,1,2]=>2
[3,6,5,4,2,1]=>3
[4,1,2,3,5,6]=>2
[4,1,2,3,6,5]=>2
[4,1,2,5,3,6]=>2
[4,1,2,5,6,3]=>2
[4,1,2,6,3,5]=>2
[4,1,2,6,5,3]=>2
[4,1,3,2,5,6]=>2
[4,1,3,2,6,5]=>2
[4,1,3,5,2,6]=>4
[4,1,3,5,6,2]=>8
[4,1,3,6,2,5]=>4
[4,1,3,6,5,2]=>4
[4,1,5,2,3,6]=>4
[4,1,5,2,6,3]=>8
[4,1,5,3,2,6]=>2
[4,1,5,3,6,2]=>4
[4,1,5,6,2,3]=>8
[4,1,5,6,3,2]=>2
[4,1,6,2,3,5]=>8
[4,1,6,2,5,3]=>4
[4,1,6,3,2,5]=>4
[4,1,6,3,5,2]=>8
[4,1,6,5,2,3]=>4
[4,1,6,5,3,2]=>2
[4,2,1,3,5,6]=>2
[4,2,1,3,6,5]=>2
[4,2,1,5,3,6]=>2
[4,2,1,5,6,3]=>2
[4,2,1,6,3,5]=>2
[4,2,1,6,5,3]=>2
[4,2,3,1,5,6]=>3
[4,2,3,1,6,5]=>3
[4,2,3,5,1,6]=>4
[4,2,3,5,6,1]=>8
[4,2,3,6,1,5]=>4
[4,2,3,6,5,1]=>6
[4,2,5,1,3,6]=>1
[4,2,5,1,6,3]=>4
[4,2,5,3,1,6]=>6
[4,2,5,3,6,1]=>8
[4,2,5,6,1,3]=>6
[4,2,5,6,3,1]=>8
[4,2,6,1,3,5]=>4
[4,2,6,1,5,3]=>1
[4,2,6,3,1,5]=>8
[4,2,6,3,5,1]=>6
[4,2,6,5,1,3]=>2
[4,2,6,5,3,1]=>6
[4,3,1,2,5,6]=>3
[4,3,1,2,6,5]=>3
[4,3,1,5,2,6]=>2
[4,3,1,5,6,2]=>4
[4,3,1,6,2,5]=>2
[4,3,1,6,5,2]=>2
[4,3,2,1,5,6]=>1
[4,3,2,1,6,5]=>1
[4,3,2,5,1,6]=>2
[4,3,2,5,6,1]=>4
[4,3,2,6,1,5]=>2
[4,3,2,6,5,1]=>2
[4,3,5,1,2,6]=>2
[4,3,5,1,6,2]=>2
[4,3,5,2,1,6]=>3
[4,3,5,2,6,1]=>8
[4,3,5,6,1,2]=>3
[4,3,5,6,2,1]=>7
[4,3,6,1,2,5]=>4
[4,3,6,1,5,2]=>2
[4,3,6,2,1,5]=>2
[4,3,6,2,5,1]=>6
[4,3,6,5,1,2]=>4
[4,3,6,5,2,1]=>4
[4,5,1,2,3,6]=>6
[4,5,1,2,6,3]=>8
[4,5,1,3,2,6]=>2
[4,5,1,3,6,2]=>8
[4,5,1,6,2,3]=>6
[4,5,1,6,3,2]=>8
[4,5,2,1,3,6]=>2
[4,5,2,1,6,3]=>4
[4,5,2,3,1,6]=>3
[4,5,2,3,6,1]=>2
[4,5,2,6,1,3]=>6
[4,5,2,6,3,1]=>7
[4,5,3,1,2,6]=>3
[4,5,3,1,6,2]=>8
[4,5,3,2,1,6]=>4
[4,5,3,2,6,1]=>6
[4,5,3,6,1,2]=>8
[4,5,3,6,2,1]=>6
[4,5,6,1,2,3]=>4
[4,5,6,1,3,2]=>4
[4,5,6,2,1,3]=>4
[4,5,6,2,3,1]=>12
[4,5,6,3,1,2]=>12
[4,5,6,3,2,1]=>4
[4,6,1,2,3,5]=>4
[4,6,1,2,5,3]=>6
[4,6,1,3,2,5]=>8
[4,6,1,3,5,2]=>8
[4,6,1,5,2,3]=>6
[4,6,1,5,3,2]=>2
[4,6,2,1,3,5]=>2
[4,6,2,1,5,3]=>2
[4,6,2,3,1,5]=>8
[4,6,2,3,5,1]=>7
[4,6,2,5,1,3]=>4
[4,6,2,5,3,1]=>4
[4,6,3,1,2,5]=>8
[4,6,3,1,5,2]=>3
[4,6,3,2,1,5]=>2
[4,6,3,2,5,1]=>8
[4,6,3,5,1,2]=>6
[4,6,3,5,2,1]=>12
[4,6,5,1,2,3]=>4
[4,6,5,1,3,2]=>1
[4,6,5,2,1,3]=>6
[4,6,5,2,3,1]=>6
[4,6,5,3,1,2]=>6
[4,6,5,3,2,1]=>4
[5,1,2,3,4,6]=>4
[5,1,2,3,6,4]=>4
[5,1,2,4,3,6]=>4
[5,1,2,4,6,3]=>8
[5,1,2,6,3,4]=>4
[5,1,2,6,4,3]=>4
[5,1,3,2,4,6]=>2
[5,1,3,2,6,4]=>2
[5,1,3,4,2,6]=>4
[5,1,3,4,6,2]=>2
[5,1,3,6,2,4]=>4
[5,1,3,6,4,2]=>4
[5,1,4,2,3,6]=>4
[5,1,4,2,6,3]=>4
[5,1,4,3,2,6]=>2
[5,1,4,3,6,2]=>6
[5,1,4,6,2,3]=>8
[5,1,4,6,3,2]=>6
[5,1,6,2,3,4]=>4
[5,1,6,2,4,3]=>2
[5,1,6,3,2,4]=>8
[5,1,6,3,4,2]=>8
[5,1,6,4,2,3]=>8
[5,1,6,4,3,2]=>2
[5,2,1,3,4,6]=>4
[5,2,1,3,6,4]=>4
[5,2,1,4,3,6]=>2
[5,2,1,4,6,3]=>4
[5,2,1,6,3,4]=>4
[5,2,1,6,4,3]=>2
[5,2,3,1,4,6]=>4
[5,2,3,1,6,4]=>4
[5,2,3,4,1,6]=>3
[5,2,3,4,6,1]=>6
[5,2,3,6,1,4]=>1
[5,2,3,6,4,1]=>8
[5,2,4,1,3,6]=>6
[5,2,4,1,6,3]=>8
[5,2,4,3,1,6]=>3
[5,2,4,3,6,1]=>4
[5,2,4,6,1,3]=>8
[5,2,4,6,3,1]=>9
[5,2,6,1,3,4]=>6
[5,2,6,1,4,3]=>2
[5,2,6,3,1,4]=>8
[5,2,6,3,4,1]=>7
[5,2,6,4,1,3]=>3
[5,2,6,4,3,1]=>8
[5,3,1,2,4,6]=>4
[5,3,1,2,6,4]=>4
[5,3,1,4,2,6]=>6
[5,3,1,4,6,2]=>4
[5,3,1,6,2,4]=>6
[5,3,1,6,4,2]=>6
[5,3,2,1,4,6]=>2
[5,3,2,1,6,4]=>2
[5,3,2,4,1,6]=>3
[5,3,2,4,6,1]=>8
[5,3,2,6,1,4]=>1
[5,3,2,6,4,1]=>6
[5,3,4,1,2,6]=>3
[5,3,4,1,6,2]=>8
[5,3,4,2,1,6]=>4
[5,3,4,2,6,1]=>6
[5,3,4,6,1,2]=>8
[5,3,4,6,2,1]=>6
[5,3,6,1,2,4]=>6
[5,3,6,1,4,2]=>4
[5,3,6,2,1,4]=>2
[5,3,6,2,4,1]=>4
[5,3,6,4,1,2]=>6
[5,3,6,4,2,1]=>12
[5,4,1,2,3,6]=>3
[5,4,1,2,6,3]=>2
[5,4,1,3,2,6]=>3
[5,4,1,3,6,2]=>6
[5,4,1,6,2,3]=>8
[5,4,1,6,3,2]=>4
[5,4,2,1,3,6]=>3
[5,4,2,1,6,3]=>2
[5,4,2,3,1,6]=>4
[5,4,2,3,6,1]=>6
[5,4,2,6,1,3]=>2
[5,4,2,6,3,1]=>8
[5,4,3,1,2,6]=>4
[5,4,3,1,6,2]=>2
[5,4,3,2,1,6]=>1
[5,4,3,2,6,1]=>2
[5,4,3,6,1,2]=>2
[5,4,3,6,2,1]=>3
[5,4,6,1,2,3]=>4
[5,4,6,1,3,2]=>6
[5,4,6,2,1,3]=>1
[5,4,6,2,3,1]=>6
[5,4,6,3,1,2]=>6
[5,4,6,3,2,1]=>4
[5,6,1,2,3,4]=>4
[5,6,1,2,4,3]=>3
[5,6,1,3,2,4]=>9
[5,6,1,3,4,2]=>8
[5,6,1,4,2,3]=>8
[5,6,1,4,3,2]=>2
[5,6,2,1,3,4]=>3
[5,6,2,1,4,3]=>4
[5,6,2,3,1,4]=>8
[5,6,2,3,4,1]=>12
[5,6,2,4,1,3]=>6
[5,6,2,4,3,1]=>6
[5,6,3,1,2,4]=>8
[5,6,3,1,4,2]=>6
[5,6,3,2,1,4]=>2
[5,6,3,2,4,1]=>6
[5,6,3,4,1,2]=>1
[5,6,3,4,2,1]=>6
[5,6,4,1,2,3]=>12
[5,6,4,1,3,2]=>6
[5,6,4,2,1,3]=>6
[5,6,4,2,3,1]=>6
[5,6,4,3,1,2]=>6
[5,6,4,3,2,1]=>5
[6,1,2,3,4,5]=>4
[6,1,2,3,5,4]=>2
[6,1,2,4,3,5]=>4
[6,1,2,4,5,3]=>8
[6,1,2,5,3,4]=>8
[6,1,2,5,4,3]=>4
[6,1,3,2,4,5]=>4
[6,1,3,2,5,4]=>4
[6,1,3,4,2,5]=>6
[6,1,3,4,5,2]=>6
[6,1,3,5,2,4]=>8
[6,1,3,5,4,2]=>8
[6,1,4,2,3,5]=>6
[6,1,4,2,5,3]=>8
[6,1,4,3,2,5]=>2
[6,1,4,3,5,2]=>4
[6,1,4,5,2,3]=>2
[6,1,4,5,3,2]=>6
[6,1,5,2,3,4]=>6
[6,1,5,2,4,3]=>8
[6,1,5,3,2,4]=>4
[6,1,5,3,4,2]=>6
[6,1,5,4,2,3]=>6
[6,1,5,4,3,2]=>2
[6,2,1,3,4,5]=>2
[6,2,1,3,5,4]=>3
[6,2,1,4,3,5]=>4
[6,2,1,4,5,3]=>6
[6,2,1,5,3,4]=>6
[6,2,1,5,4,3]=>2
[6,2,3,1,4,5]=>8
[6,2,3,1,5,4]=>6
[6,2,3,4,1,5]=>6
[6,2,3,4,5,1]=>9
[6,2,3,5,1,4]=>8
[6,2,3,5,4,1]=>7
[6,2,4,1,3,5]=>8
[6,2,4,1,5,3]=>6
[6,2,4,3,1,5]=>4
[6,2,4,3,5,1]=>3
[6,2,4,5,1,3]=>7
[6,2,4,5,3,1]=>6
[6,2,5,1,3,4]=>8
[6,2,5,1,4,3]=>6
[6,2,5,3,1,4]=>9
[6,2,5,3,4,1]=>6
[6,2,5,4,1,3]=>8
[6,2,5,4,3,1]=>3
[6,3,1,2,4,5]=>8
[6,3,1,2,5,4]=>6
[6,3,1,4,2,5]=>8
[6,3,1,4,5,2]=>8
[6,3,1,5,2,4]=>6
[6,3,1,5,4,2]=>6
[6,3,2,1,4,5]=>4
[6,3,2,1,5,4]=>2
[6,3,2,4,1,5]=>8
[6,3,2,4,5,1]=>7
[6,3,2,5,1,4]=>6
[6,3,2,5,4,1]=>4
[6,3,4,1,2,5]=>2
[6,3,4,1,5,2]=>7
[6,3,4,2,1,5]=>6
[6,3,4,2,5,1]=>6
[6,3,4,5,1,2]=>12
[6,3,4,5,2,1]=>4
[6,3,5,1,2,4]=>7
[6,3,5,1,4,2]=>4
[6,3,5,2,1,4]=>8
[6,3,5,2,4,1]=>12
[6,3,5,4,1,2]=>6
[6,3,5,4,2,1]=>4
[6,4,1,2,3,5]=>6
[6,4,1,2,5,3]=>8
[6,4,1,3,2,5]=>4
[6,4,1,3,5,2]=>9
[6,4,1,5,2,3]=>7
[6,4,1,5,3,2]=>8
[6,4,2,1,3,5]=>8
[6,4,2,1,5,3]=>6
[6,4,2,3,1,5]=>6
[6,4,2,3,5,1]=>6
[6,4,2,5,1,3]=>4
[6,4,2,5,3,1]=>12
[6,4,3,1,2,5]=>6
[6,4,3,1,5,2]=>8
[6,4,3,2,1,5]=>2
[6,4,3,2,5,1]=>3
[6,4,3,5,1,2]=>6
[6,4,3,5,2,1]=>4
[6,4,5,1,2,3]=>12
[6,4,5,1,3,2]=>6
[6,4,5,2,1,3]=>6
[6,4,5,2,3,1]=>6
[6,4,5,3,1,2]=>6
[6,4,5,3,2,1]=>5
[6,5,1,2,3,4]=>9
[6,5,1,2,4,3]=>7
[6,5,1,3,2,4]=>3
[6,5,1,3,4,2]=>6
[6,5,1,4,2,3]=>6
[6,5,1,4,3,2]=>3
[6,5,2,1,3,4]=>7
[6,5,2,1,4,3]=>4
[6,5,2,3,1,4]=>6
[6,5,2,3,4,1]=>4
[6,5,2,4,1,3]=>12
[6,5,2,4,3,1]=>4
[6,5,3,1,2,4]=>6
[6,5,3,1,4,2]=>12
[6,5,3,2,1,4]=>3
[6,5,3,2,4,1]=>4
[6,5,3,4,1,2]=>6
[6,5,3,4,2,1]=>5
[6,5,4,1,2,3]=>4
[6,5,4,1,3,2]=>4
[6,5,4,2,1,3]=>4
[6,5,4,2,3,1]=>5
[6,5,4,3,1,2]=>5
[6,5,4,3,2,1]=>1
[1,2,3,4,5,6,7]=>1
[1,2,3,4,5,7,6]=>1
[1,2,3,4,6,5,7]=>1
[1,2,3,4,6,7,5]=>2
[1,2,3,4,7,5,6]=>2
[1,2,3,4,7,6,5]=>1
[1,2,3,5,4,6,7]=>1
[1,2,3,5,4,7,6]=>1
[1,2,3,5,6,4,7]=>2
[1,2,3,5,6,7,4]=>2
[1,2,3,5,7,4,6]=>2
[1,2,3,5,7,6,4]=>2
[1,2,3,6,4,5,7]=>2
[1,2,3,6,4,7,5]=>2
[1,2,3,6,5,4,7]=>1
[1,2,3,6,5,7,4]=>2
[1,2,3,6,7,4,5]=>1
[1,2,3,6,7,5,4]=>3
[1,2,3,7,4,5,6]=>2
[1,2,3,7,4,6,5]=>2
[1,2,3,7,5,4,6]=>2
[1,2,3,7,5,6,4]=>3
[1,2,3,7,6,4,5]=>3
[1,2,3,7,6,5,4]=>1
[1,2,4,3,5,6,7]=>1
[1,2,4,3,5,7,6]=>1
[1,2,4,3,6,5,7]=>1
[1,2,4,3,6,7,5]=>2
[1,2,4,3,7,5,6]=>2
[1,2,4,3,7,6,5]=>1
[1,2,4,5,3,6,7]=>2
[1,2,4,5,3,7,6]=>2
[1,2,4,5,6,3,7]=>2
[1,2,4,5,6,7,3]=>4
[1,2,4,5,7,3,6]=>2
[1,2,4,5,7,6,3]=>4
[1,2,4,6,3,5,7]=>2
[1,2,4,6,3,7,5]=>2
[1,2,4,6,5,3,7]=>2
[1,2,4,6,5,7,3]=>2
[1,2,4,6,7,3,5]=>4
[1,2,4,6,7,5,3]=>4
[1,2,4,7,3,5,6]=>2
[1,2,4,7,3,6,5]=>2
[1,2,4,7,5,3,6]=>4
[1,2,4,7,5,6,3]=>4
[1,2,4,7,6,3,5]=>2
[1,2,4,7,6,5,3]=>2
[1,2,5,3,4,6,7]=>2
[1,2,5,3,4,7,6]=>2
[1,2,5,3,6,4,7]=>2
[1,2,5,3,6,7,4]=>2
[1,2,5,3,7,4,6]=>2
[1,2,5,3,7,6,4]=>2
[1,2,5,4,3,6,7]=>1
[1,2,5,4,3,7,6]=>1
[1,2,5,4,6,3,7]=>2
[1,2,5,4,6,7,3]=>4
[1,2,5,4,7,3,6]=>2
[1,2,5,4,7,6,3]=>2
[1,2,5,6,3,4,7]=>1
[1,2,5,6,3,7,4]=>4
[1,2,5,6,4,3,7]=>3
[1,2,5,6,4,7,3]=>4
[1,2,5,6,7,3,4]=>6
[1,2,5,6,7,4,3]=>3
[1,2,5,7,3,4,6]=>4
[1,2,5,7,3,6,4]=>1
[1,2,5,7,4,3,6]=>2
[1,2,5,7,4,6,3]=>6
[1,2,5,7,6,3,4]=>2
[1,2,5,7,6,4,3]=>3
[1,2,6,3,4,5,7]=>2
[1,2,6,3,4,7,5]=>2
[1,2,6,3,5,4,7]=>2
[1,2,6,3,5,7,4]=>4
[1,2,6,3,7,4,5]=>4
[1,2,6,3,7,5,4]=>2
[1,2,6,4,3,5,7]=>2
[1,2,6,4,3,7,5]=>2
[1,2,6,4,5,3,7]=>3
[1,2,6,4,5,7,3]=>4
[1,2,6,4,7,3,5]=>1
[1,2,6,4,7,5,3]=>6
[1,2,6,5,3,4,7]=>3
[1,2,6,5,3,7,4]=>2
[1,2,6,5,4,3,7]=>1
[1,2,6,5,4,7,3]=>2
[1,2,6,5,7,3,4]=>2
[1,2,6,5,7,4,3]=>3
[1,2,6,7,3,4,5]=>6
[1,2,6,7,3,5,4]=>2
[1,2,6,7,4,3,5]=>2
[1,2,6,7,4,5,3]=>3
[1,2,6,7,5,3,4]=>3
[1,2,6,7,5,4,3]=>4
[1,2,7,3,4,5,6]=>4
[1,2,7,3,4,6,5]=>4
[1,2,7,3,5,4,6]=>2
[1,2,7,3,5,6,4]=>4
[1,2,7,3,6,4,5]=>4
[1,2,7,3,6,5,4]=>2
[1,2,7,4,3,5,6]=>4
[1,2,7,4,3,6,5]=>2
[1,2,7,4,5,3,6]=>4
[1,2,7,4,5,6,3]=>3
[1,2,7,4,6,3,5]=>6
[1,2,7,4,6,5,3]=>3
[1,2,7,5,3,4,6]=>4
[1,2,7,5,3,6,4]=>6
[1,2,7,5,4,3,6]=>2
[1,2,7,5,4,6,3]=>3
[1,2,7,5,6,3,4]=>3
[1,2,7,5,6,4,3]=>4
[1,2,7,6,3,4,5]=>3
[1,2,7,6,3,5,4]=>3
[1,2,7,6,4,3,5]=>3
[1,2,7,6,4,5,3]=>4
[1,2,7,6,5,3,4]=>4
[1,2,7,6,5,4,3]=>1
[1,3,2,4,5,6,7]=>1
[1,3,2,4,5,7,6]=>1
[1,3,2,4,6,5,7]=>1
[1,3,2,4,6,7,5]=>2
[1,3,2,4,7,5,6]=>2
[1,3,2,4,7,6,5]=>1
[1,3,2,5,4,6,7]=>1
[1,3,2,5,4,7,6]=>1
[1,3,2,5,6,4,7]=>2
[1,3,2,5,6,7,4]=>2
[1,3,2,5,7,4,6]=>2
[1,3,2,5,7,6,4]=>2
[1,3,2,6,4,5,7]=>2
[1,3,2,6,4,7,5]=>2
[1,3,2,6,5,4,7]=>1
[1,3,2,6,5,7,4]=>2
[1,3,2,6,7,4,5]=>1
[1,3,2,6,7,5,4]=>3
[1,3,2,7,4,5,6]=>2
[1,3,2,7,4,6,5]=>2
[1,3,2,7,5,4,6]=>2
[1,3,2,7,5,6,4]=>3
[1,3,2,7,6,4,5]=>3
[1,3,2,7,6,5,4]=>1
[1,3,4,2,5,6,7]=>2
[1,3,4,2,5,7,6]=>2
[1,3,4,2,6,5,7]=>2
[1,3,4,2,6,7,5]=>4
[1,3,4,2,7,5,6]=>4
[1,3,4,2,7,6,5]=>2
[1,3,4,5,2,6,7]=>2
[1,3,4,5,2,7,6]=>2
[1,3,4,5,6,2,7]=>4
[1,3,4,5,6,7,2]=>4
[1,3,4,5,7,2,6]=>4
[1,3,4,5,7,6,2]=>2
[1,3,4,6,2,5,7]=>2
[1,3,4,6,2,7,5]=>2
[1,3,4,6,5,2,7]=>4
[1,3,4,6,5,7,2]=>4
[1,3,4,6,7,2,5]=>4
[1,3,4,6,7,5,2]=>8
[1,3,4,7,2,5,6]=>2
[1,3,4,7,2,6,5]=>2
[1,3,4,7,5,2,6]=>8
[1,3,4,7,5,6,2]=>8
[1,3,4,7,6,2,5]=>4
[1,3,4,7,6,5,2]=>4
[1,3,5,2,4,6,7]=>2
[1,3,5,2,4,7,6]=>2
[1,3,5,2,6,4,7]=>2
[1,3,5,2,6,7,4]=>2
[1,3,5,2,7,4,6]=>2
[1,3,5,2,7,6,4]=>2
[1,3,5,4,2,6,7]=>2
[1,3,5,4,2,7,6]=>2
[1,3,5,4,6,2,7]=>2
[1,3,5,4,6,7,2]=>4
[1,3,5,4,7,2,6]=>2
[1,3,5,4,7,6,2]=>4
[1,3,5,6,2,4,7]=>4
[1,3,5,6,2,7,4]=>8
[1,3,5,6,4,2,7]=>4
[1,3,5,6,4,7,2]=>6
[1,3,5,6,7,2,4]=>4
[1,3,5,6,7,4,2]=>6
[1,3,5,7,2,4,6]=>8
[1,3,5,7,2,6,4]=>4
[1,3,5,7,4,2,6]=>4
[1,3,5,7,4,6,2]=>8
[1,3,5,7,6,2,4]=>2
[1,3,5,7,6,4,2]=>8
[1,3,6,2,4,5,7]=>2
[1,3,6,2,4,7,5]=>2
[1,3,6,2,5,4,7]=>2
[1,3,6,2,5,7,4]=>4
[1,3,6,2,7,4,5]=>4
[1,3,6,2,7,5,4]=>2
[1,3,6,4,2,5,7]=>4
[1,3,6,4,2,7,5]=>4
[1,3,6,4,5,2,7]=>4
[1,3,6,4,5,7,2]=>6
[1,3,6,4,7,2,5]=>4
[1,3,6,4,7,5,2]=>8
[1,3,6,5,2,4,7]=>2
[1,3,6,5,2,7,4]=>4
[1,3,6,5,4,2,7]=>2
[1,3,6,5,4,7,2]=>2
[1,3,6,5,7,2,4]=>8
[1,3,6,5,7,4,2]=>4
[1,3,6,7,2,4,5]=>8
[1,3,6,7,2,5,4]=>4
[1,3,6,7,4,2,5]=>8
[1,3,6,7,4,5,2]=>2
[1,3,6,7,5,2,4]=>8
[1,3,6,7,5,4,2]=>6
[1,3,7,2,4,5,6]=>4
[1,3,7,2,4,6,5]=>4
[1,3,7,2,5,4,6]=>2
[1,3,7,2,5,6,4]=>4
[1,3,7,2,6,4,5]=>4
[1,3,7,2,6,5,4]=>2
[1,3,7,4,2,5,6]=>8
[1,3,7,4,2,6,5]=>4
[1,3,7,4,5,2,6]=>2
[1,3,7,4,5,6,2]=>6
[1,3,7,4,6,2,5]=>4
[1,3,7,4,6,5,2]=>8
[1,3,7,5,2,4,6]=>4
[1,3,7,5,2,6,4]=>8
[1,3,7,5,4,2,6]=>6
[1,3,7,5,4,6,2]=>4
[1,3,7,5,6,2,4]=>8
[1,3,7,5,6,4,2]=>6
[1,3,7,6,2,4,5]=>2
[1,3,7,6,2,5,4]=>2
[1,3,7,6,4,2,5]=>6
[1,3,7,6,4,5,2]=>6
[1,3,7,6,5,2,4]=>2
[1,3,7,6,5,4,2]=>2
[1,4,2,3,5,6,7]=>2
[1,4,2,3,5,7,6]=>2
[1,4,2,3,6,5,7]=>2
[1,4,2,3,6,7,5]=>4
[1,4,2,3,7,5,6]=>4
[1,4,2,3,7,6,5]=>2
[1,4,2,5,3,6,7]=>2
[1,4,2,5,3,7,6]=>2
[1,4,2,5,6,3,7]=>2
[1,4,2,5,6,7,3]=>4
[1,4,2,5,7,3,6]=>2
[1,4,2,5,7,6,3]=>4
[1,4,2,6,3,5,7]=>2
[1,4,2,6,3,7,5]=>2
[1,4,2,6,5,3,7]=>2
[1,4,2,6,5,7,3]=>2
[1,4,2,6,7,3,5]=>4
[1,4,2,6,7,5,3]=>4
[1,4,2,7,3,5,6]=>2
[1,4,2,7,3,6,5]=>2
[1,4,2,7,5,3,6]=>4
[1,4,2,7,5,6,3]=>4
[1,4,2,7,6,3,5]=>2
[1,4,2,7,6,5,3]=>2
[1,4,3,2,5,6,7]=>1
[1,4,3,2,5,7,6]=>1
[1,4,3,2,6,5,7]=>1
[1,4,3,2,6,7,5]=>2
[1,4,3,2,7,5,6]=>2
[1,4,3,2,7,6,5]=>1
[1,4,3,5,2,6,7]=>2
[1,4,3,5,2,7,6]=>2
[1,4,3,5,6,2,7]=>4
[1,4,3,5,6,7,2]=>2
[1,4,3,5,7,2,6]=>4
[1,4,3,5,7,6,2]=>3
[1,4,3,6,2,5,7]=>2
[1,4,3,6,2,7,5]=>2
[1,4,3,6,5,2,7]=>2
[1,4,3,6,5,7,2]=>4
[1,4,3,6,7,2,5]=>4
[1,4,3,6,7,5,2]=>6
[1,4,3,7,2,5,6]=>2
[1,4,3,7,2,6,5]=>2
[1,4,3,7,5,2,6]=>4
[1,4,3,7,5,6,2]=>6
[1,4,3,7,6,2,5]=>2
[1,4,3,7,6,5,2]=>2
[1,4,5,2,3,6,7]=>1
[1,4,5,2,3,7,6]=>1
[1,4,5,2,6,3,7]=>4
[1,4,5,2,6,7,3]=>4
[1,4,5,2,7,3,6]=>4
[1,4,5,2,7,6,3]=>4
[1,4,5,3,2,6,7]=>3
[1,4,5,3,2,7,6]=>3
[1,4,5,3,6,2,7]=>4
[1,4,5,3,6,7,2]=>8
[1,4,5,3,7,2,6]=>4
[1,4,5,3,7,6,2]=>6
[1,4,5,6,2,3,7]=>6
[1,4,5,6,2,7,3]=>4
[1,4,5,6,3,2,7]=>3
[1,4,5,6,3,7,2]=>6
[1,4,5,6,7,2,3]=>4
[1,4,5,6,7,3,2]=>9
[1,4,5,7,2,3,6]=>8
[1,4,5,7,2,6,3]=>6
[1,4,5,7,3,2,6]=>2
[1,4,5,7,3,6,2]=>8
[1,4,5,7,6,2,3]=>3
[1,4,5,7,6,3,2]=>7
[1,4,6,2,3,5,7]=>4
[1,4,6,2,3,7,5]=>4
[1,4,6,2,5,3,7]=>1
[1,4,6,2,5,7,3]=>4
[1,4,6,2,7,3,5]=>3
[1,4,6,2,7,5,3]=>6
[1,4,6,3,2,5,7]=>2
[1,4,6,3,2,7,5]=>2
[1,4,6,3,5,2,7]=>6
[1,4,6,3,5,7,2]=>8
[1,4,6,3,7,2,5]=>6
[1,4,6,3,7,5,2]=>6
[1,4,6,5,2,3,7]=>2
[1,4,6,5,2,7,3]=>8
[1,4,6,5,3,2,7]=>3
[1,4,6,5,3,7,2]=>4
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of permutations with the same antidiagonal sums.
The X-ray of a permutation $\pi$ is the vector of the sums of the antidiagonals of the permutation matrix of $\pi$, read from left to right. For example, the permutation matrix of $\pi=[3,1,2,5,4]$ is
$$\left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right),$$
so its X-ray is $(0, 1, 1, 1, 0, 0, 0, 2, 0)$.
This statistic records the number of permutations having the same X-ray as the given permutation. In [1] this is called the degeneracy of the X-ray of the permutation.
By [prop.1, 1], the number of different X-rays of permutations of size $n$ equals the number of nondecreasing differences of permutations of size $n$, [2].
The X-ray of a permutation $\pi$ is the vector of the sums of the antidiagonals of the permutation matrix of $\pi$, read from left to right. For example, the permutation matrix of $\pi=[3,1,2,5,4]$ is
$$\left(\begin{array}{rrrrr} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right),$$
so its X-ray is $(0, 1, 1, 1, 0, 0, 0, 2, 0)$.
This statistic records the number of permutations having the same X-ray as the given permutation. In [1] this is called the degeneracy of the X-ray of the permutation.
By [prop.1, 1], the number of different X-rays of permutations of size $n$ equals the number of nondecreasing differences of permutations of size $n$, [2].
References
[1] Bebeacua, C., Mansour, T., Postnikov, A., Severini, S. On the X-rays of permutations arXiv:math/0506334
[2] Number of nondecreasing sequences that are differences of two permutations of 1,2,...,n. OEIS:A019589
[2] Number of nondecreasing sequences that are differences of two permutations of 1,2,...,n. OEIS:A019589
Code
def X_ray(pi): P = Permutation(pi).to_matrix() n = P.nrows() return tuple(sum(P[k-1-j][j] for j in range(max(0, k-n), min(k,n))) for k in range(1,2*n)) @cached_function def X_rays(n): return sorted(X_ray(pi) for pi in Permutations(n)) def statistic(pi): return X_rays(pi.size()).count(X_ray(pi))
Created
Jul 14, 2017 at 09:26 by Martin Rubey
Updated
Jul 14, 2017 at 11:53 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!