Identifier
- St000901: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>8
[1,1,1]=>1
[4]=>1
[3,1]=>27
[2,2]=>8
[2,1,1]=>27
[1,1,1,1]=>1
[5]=>1
[4,1]=>64
[3,2]=>125
[3,1,1]=>216
[2,2,1]=>125
[2,1,1,1]=>64
[1,1,1,1,1]=>1
[6]=>1
[5,1]=>125
[4,2]=>729
[4,1,1]=>1000
[3,3]=>125
[3,2,1]=>4096
[3,1,1,1]=>1000
[2,2,2]=>125
[2,2,1,1]=>729
[2,1,1,1,1]=>125
[1,1,1,1,1,1]=>1
[7]=>1
[6,1]=>216
[5,2]=>2744
[5,1,1]=>3375
[4,3]=>2744
[4,2,1]=>42875
[4,1,1,1]=>8000
[3,3,1]=>9261
[3,2,2]=>9261
[3,2,1,1]=>42875
[3,1,1,1,1]=>3375
[2,2,2,1]=>2744
[2,2,1,1,1]=>2744
[2,1,1,1,1,1]=>216
[1,1,1,1,1,1,1]=>1
[8]=>1
[7,1]=>343
[6,2]=>8000
[6,1,1]=>9261
[5,3]=>21952
[5,2,1]=>262144
[5,1,1,1]=>42875
[4,4]=>2744
[4,3,1]=>343000
[4,2,2]=>175616
[4,2,1,1]=>729000
[4,1,1,1,1]=>42875
[3,3,2]=>74088
[3,3,1,1]=>175616
[3,2,2,1]=>343000
[3,2,1,1,1]=>262144
[3,1,1,1,1,1]=>9261
[2,2,2,2]=>2744
[2,2,2,1,1]=>21952
[2,2,1,1,1,1]=>8000
[2,1,1,1,1,1,1]=>343
[1,1,1,1,1,1,1,1]=>1
[9]=>1
[8,1]=>512
[7,2]=>19683
[7,1,1]=>21952
[6,3]=>110592
[6,2,1]=>1157625
[6,1,1,1]=>175616
[5,4]=>74088
[5,3,1]=>4251528
[5,2,2]=>1728000
[5,2,1,1]=>6751269
[5,1,1,1,1]=>343000
[4,4,1]=>592704
[4,3,2]=>4741632
[4,3,1,1]=>10077696
[4,2,2,1]=>10077696
[4,2,1,1,1]=>6751269
[4,1,1,1,1,1]=>175616
[3,3,3]=>74088
[3,3,2,1]=>4741632
[3,3,1,1,1]=>1728000
[3,2,2,2]=>592704
[3,2,2,1,1]=>4251528
[3,2,1,1,1,1]=>1157625
[3,1,1,1,1,1,1]=>21952
[2,2,2,2,1]=>74088
[2,2,2,1,1,1]=>110592
[2,2,1,1,1,1,1]=>19683
[2,1,1,1,1,1,1,1]=>512
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1
[9,1]=>729
[8,2]=>42875
[8,1,1]=>46656
[7,3]=>421875
[7,2,1]=>4096000
[7,1,1,1]=>592704
[6,4]=>729000
[6,3,1]=>31255875
[6,2,2]=>11390625
[6,2,1,1]=>42875000
[6,1,1,1,1]=>2000376
[5,5]=>74088
[5,4,1]=>23887872
[5,3,2]=>91125000
[5,3,1,1]=>182284263
[5,2,2,1]=>144703125
[5,2,1,1,1]=>89915392
[5,1,1,1,1,1]=>2000376
[4,4,2]=>16003008
[4,4,1,1]=>27000000
[4,3,3]=>9261000
[4,3,2,1]=>452984832
[4,3,1,1,1]=>144703125
[4,2,2,2]=>27000000
[4,2,2,1,1]=>182284263
[4,2,1,1,1,1]=>42875000
[4,1,1,1,1,1,1]=>592704
[3,3,3,1]=>9261000
[3,3,2,2]=>16003008
[3,3,2,1,1]=>91125000
[3,3,1,1,1,1]=>11390625
[3,2,2,2,1]=>23887872
[3,2,2,1,1,1]=>31255875
[3,2,1,1,1,1,1]=>4096000
[3,1,1,1,1,1,1,1]=>46656
[2,2,2,2,2]=>74088
[2,2,2,2,1,1]=>729000
[2,2,2,1,1,1,1]=>421875
[2,2,1,1,1,1,1,1]=>42875
[2,1,1,1,1,1,1,1,1]=>729
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>1
[10,1]=>1000
[9,2]=>85184
[9,1,1]=>91125
[8,3]=>1331000
[8,2,1]=>12326391
[8,1,1,1]=>1728000
[7,4]=>4492125
[7,3,1]=>166375000
[7,2,2]=>57066625
[7,2,1,1]=>209584584
[7,1,1,1,1]=>9261000
[6,5]=>2299968
[6,4,1]=>332812557
[6,3,2]=>970299000
[6,3,1,1]=>1869959168
[6,2,2,1]=>1331000000
[6,2,1,1,1]=>788889024
[6,1,1,1,1,1]=>16003008
[5,5,1]=>35937000
[5,4,2]=>970299000
[5,4,1,1]=>1540798875
[5,3,3]=>287496000
[5,2,2,2]=>561515625
[5,2,1,1,1,1]=>788889024
[5,1,1,1,1,1,1]=>9261000
[4,4,3]=>98611128
[4,4,1,1,1]=>561515625
[4,3,3,1]=>1676676672
[4,3,1,1,1,1]=>1331000000
[4,2,2,2,1]=>1540798875
[4,2,2,1,1,1]=>1869959168
[4,2,1,1,1,1,1]=>209584584
[4,1,1,1,1,1,1,1]=>1728000
[3,3,3,2]=>98611128
[3,3,3,1,1]=>287496000
[3,3,2,2,1]=>970299000
[3,3,2,1,1,1]=>970299000
[3,3,1,1,1,1,1]=>57066625
[3,2,2,2,2]=>35937000
[3,2,2,2,1,1]=>332812557
[3,2,2,1,1,1,1]=>166375000
[3,2,1,1,1,1,1,1]=>12326391
[3,1,1,1,1,1,1,1,1]=>91125
[2,2,2,2,2,1]=>2299968
[2,2,2,2,1,1,1]=>4492125
[2,2,2,1,1,1,1,1]=>1331000
[2,2,1,1,1,1,1,1,1]=>85184
[2,1,1,1,1,1,1,1,1,1]=>1000
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>1
[11,1]=>1331
[10,2]=>157464
[10,1,1]=>166375
[9,3]=>3652264
[9,2,1]=>32768000
[9,1,1,1]=>4492125
[8,4]=>20796875
[8,3,1]=>707347971
[8,2,2]=>233744896
[8,2,1,1]=>843908625
[8,1,1,1,1]=>35937000
[7,5]=>26198073
[7,1,1,1,1,1]=>98611128
[6,6]=>2299968
[6,5,1]=>1540798875
[6,1,1,1,1,1,1]=>98611128
[5,1,1,1,1,1,1,1]=>35937000
[4,4,4]=>98611128
[4,2,1,1,1,1,1,1]=>843908625
[4,1,1,1,1,1,1,1,1]=>4492125
[3,3,3,3]=>98611128
[3,3,1,1,1,1,1,1]=>233744896
[3,2,2,2,2,1]=>1540798875
[3,2,2,1,1,1,1,1]=>707347971
[3,2,1,1,1,1,1,1,1]=>32768000
[3,1,1,1,1,1,1,1,1,1]=>166375
[2,2,2,2,2,2]=>2299968
[2,2,2,2,2,1,1]=>26198073
[2,2,2,2,1,1,1,1]=>20796875
[2,2,2,1,1,1,1,1,1]=>3652264
[2,2,1,1,1,1,1,1,1,1]=>157464
[2,1,1,1,1,1,1,1,1,1,1]=>1331
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The cube of the number of standard Young tableaux with shape given by the partition.
Code
def statistic(p): return StandardTableaux(p).cardinality()^3
Created
Jul 16, 2017 at 18:21 by Martin Rubey
Updated
Jul 16, 2017 at 18:21 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!