Identifier
-
Mp00030:
Dyck paths
—zeta map⟶
Dyck paths
Mp00229: Dyck paths —Delest-Viennot⟶ Dyck paths
Mp00232: Dyck paths —parallelogram poset⟶ Posets
St000907: Posets ⟶ ℤ
Values
[1,0] => [1,0] => [1,0] => ([],1) => 1
[1,0,1,0] => [1,1,0,0] => [1,0,1,0] => ([(0,1)],2) => 2
[1,1,0,0] => [1,0,1,0] => [1,1,0,0] => ([(0,1)],2) => 2
[1,0,1,0,1,0] => [1,1,1,0,0,0] => [1,0,1,0,1,0] => ([(0,2),(2,1)],3) => 3
[1,0,1,1,0,0] => [1,0,1,1,0,0] => [1,1,0,0,1,0] => ([(0,2),(2,1)],3) => 3
[1,1,0,0,1,0] => [1,1,0,1,0,0] => [1,1,1,0,0,0] => ([(0,1),(0,2),(1,3),(2,3)],4) => 2
[1,1,0,1,0,0] => [1,1,0,0,1,0] => [1,0,1,1,0,0] => ([(0,2),(2,1)],3) => 3
[1,1,1,0,0,0] => [1,0,1,0,1,0] => [1,1,0,1,0,0] => ([(0,2),(2,1)],3) => 3
[1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,1,0,0] => [1,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,0,0,1,0] => [1,1,0,1,1,0,0,0] => [1,1,1,0,0,0,1,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 3
[1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0] => [1,1,0,1,0,0,1,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,0,1,0,1,0] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,1,0,0,1,1,0,0] => [1,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0] => ([(0,2),(0,3),(1,5),(2,4),(3,1),(3,4),(4,5)],6) => 2
[1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => [1,0,1,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 3
[1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0] => [1,0,1,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,0,0] => [1,1,0,1,1,0,0,0] => ([(0,3),(1,4),(2,4),(3,1),(3,2)],5) => 3
[1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,0,0] => ([(0,2),(0,3),(2,4),(3,4),(4,1)],5) => 3
[1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,0] => [1,0,1,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,0] => ([(0,3),(2,1),(3,2)],4) => 4
[1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,1,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,0,1,0,0,1,0] => [1,1,1,0,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
[1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,0,0] => [1,0,1,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,0,0] => [1,1,0,0,1,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
[1,0,1,1,1,0,0,1,0,0] => [1,1,0,1,0,0,1,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,0,1,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,0,0] => [1,0,1,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 4
[1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,0] => [1,1,0,0,1,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => [1,1,0,0,1,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 4
[1,1,0,1,1,0,0,1,0,0] => [1,1,0,1,1,0,0,0,1,0] => [1,1,1,0,0,0,1,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0] => [1,0,1,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,0,1,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,0,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => [1,1,1,0,0,1,1,0,0,0] => ([(0,3),(0,4),(1,5),(2,5),(3,6),(4,6),(6,1),(6,2)],7) => 3
[1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => [1,0,1,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 4
[1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,0,1,0,0,1,0] => [1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
[1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,0,0] => [1,1,0,1,0,1,1,0,0,0] => ([(0,3),(1,5),(2,5),(3,4),(4,1),(4,2)],6) => 4
[1,1,1,1,0,0,0,1,0,0] => [1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,5),(2,5),(4,1),(4,2),(5,3)],6) => 4
[1,1,1,1,0,0,1,0,0,0] => [1,1,0,1,0,0,1,0,1,0] => [1,1,1,0,0,1,0,1,0,0] => ([(0,2),(0,3),(2,5),(3,5),(4,1),(5,4)],6) => 4
[1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,0] => ([(0,4),(2,3),(3,1),(4,2)],5) => 5
[1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,0,1,0,0,1,0] => [1,1,1,1,0,0,0,1,1,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,1,0,0,0,1,0] => [1,0,1,1,1,0,0,1,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,0,1,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => [1,1,0,1,0,0,1,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,1,0,1,0,0,0,1,0] => [1,1,0,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,0,1,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,0,1,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,1,1,0,0,0,0,1,0] => [1,0,1,0,1,1,0,1,1,0,0,0] => [1,1,0,1,0,1,1,0,0,0,1,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,0,1,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => [1,0,1,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,0,1,0,1,0,1,0,0,1,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,0,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => [1,0,1,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,1,0,0,0,0,1,0] => [1,1,0,0,1,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,1,0,1,0,0,0] => [1,1,0,0,1,1,1,0,0,0,1,0] => [1,0,1,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,0,1,1,1,0,0,0,0] => [1,0,1,0,1,1,1,0,0,0,1,0] => [1,1,0,1,0,0,1,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,1,0,1,0,1,0,0,0] => [1,1,1,0,0,0,1,1,0,0,1,0] => [1,0,1,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,1,0,1,1,0,0,0,0] => [1,0,1,1,0,0,1,1,0,0,1,0] => [1,1,0,0,1,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,1,1,0,1,0,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0] => [1,0,1,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,0,1,1,1,1,0,0,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0] => [1,1,0,1,0,1,0,0,1,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,1,0,1,0,0,1,0,0] => [1,1,1,1,0,0,0,1,0,0,1,0] => [1,0,1,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,1,1,0,1,0,1,0,1,0,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => [1,0,1,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,1,0,1,1,0,0,0,0] => [1,0,1,1,1,0,0,0,1,0,1,0] => [1,1,0,0,1,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,1,1,0,0,0,1,0,0] => [1,0,1,1,1,0,0,1,0,0,1,0] => [1,1,0,0,1,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,1,1,0,1,1,0,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0] => [1,0,1,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,0,1,1,1,0,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0] => [1,1,0,1,0,0,1,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,0,1,0,0,0,1,0,0] => [1,1,0,0,1,1,0,1,0,0,1,0] => [1,0,1,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,1,1,1,0,1,0,1,0,0,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => [1,0,1,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,0,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0] => [1,1,0,0,1,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,1,0,0,0,0,1,0,0] => [1,0,1,0,1,1,0,1,0,0,1,0] => [1,1,0,1,0,1,1,0,0,1,0,0] => ([(0,4),(1,6),(2,6),(4,5),(5,1),(5,2),(6,3)],7) => 5
[1,1,1,1,1,0,1,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0] => [1,0,1,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,1,1,1,1,1,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,0,1,0,1,0,1,0,1,0,0] => ([(0,5),(2,4),(3,2),(4,1),(5,3)],6) => 6
[1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,0,1,1,1,1,1,1,0,0,0,0,0,0] => [1,1,0,0,1,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,0,0,1,1,1,1,1,0,0,0,0,0] => [1,0,1,1,0,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,0,1,1,1,0,0,0] => [1,0,1,0,1,1,1,1,1,0,0,0,0,0] => [1,1,0,1,0,0,1,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,0,1,1,0,0,0] => [1,0,1,1,0,0,1,1,1,1,0,0,0,0] => [1,1,0,0,1,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,0,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,1,0,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,0,1,0,1,0,1,1,1,1,0,0,0,0] => [1,1,0,1,0,1,0,0,1,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,0,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,1,1,0,0,0] => [1,0,1,0,1,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
[1,0,1,0,1,1,0,1,0,1,1,0,0,0] => [1,0,1,1,1,0,0,0,1,1,1,0,0,0] => [1,1,0,0,1,0,1,1,0,0,1,0,1,0] => ([(0,6),(2,3),(3,5),(4,2),(5,1),(6,4)],7) => 7
>>> Load all 155 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of maximal antichains of minimal length in a poset.
Map
Delest-Viennot
Description
Return the Dyck path corresponding to the parallelogram polyomino obtained by applying Delest-Viennot's bijection.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
The Delest-Viennot bijection β returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path (γ(−1)∘β)(D).
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
The Delest-Viennot bijection β returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path (γ(−1)∘β)(D).
Map
zeta map
Description
The zeta map on Dyck paths.
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
The zeta map ζ is a bijection on Dyck paths of semilength n.
It was defined in [1, Theorem 1], see also [2, Theorem 3.15] and sends the bistatistic (area, dinv) to the bistatistic (bounce, area). It is defined by sending a Dyck path D with corresponding area sequence a=(a1,…,an) to a Dyck path as follows:
- First, build an intermediate Dyck path consisting of d1 north steps, followed by d1 east steps, followed by d2 north steps and d2 east steps, and so on, where di is the number of i−1's within the sequence a.
For example, given a=(0,1,2,2,2,3,1,2), we build the path
NE NNEE NNNNEEEE NE. - Next, the rectangles between two consecutive peaks are filled. Observe that such the rectangle between the kth and the (k+1)st peak must be filled by dk east steps and dk+1 north steps. In the above example, the rectangle between the second and the third peak must be filled by 2 east and 4 north steps, the 2 being the number of 1's in a, and 4 being the number of 2's. To fill such a rectangle, scan through the sequence a from left to right, and add east or north steps whenever you see a k−1 or k, respectively. So to fill the 2×4 rectangle, we look for 1's and 2's in the sequence and see 122212, so this rectangle gets filled with ENNNEN.
The complete path we obtain in thus
NENNENNNENEEENEE.
Map
parallelogram poset
Description
The cell poset of the parallelogram polyomino corresponding to the Dyck path.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
This map returns the cell poset of γ(D). In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
Let D be a Dyck path of semilength n. The parallelogram polyomino γ(D) is defined as follows: let ˜D=d0d1…d2n+1 be the Dyck path obtained by prepending an up step and appending a down step to D. Then, the upper path of γ(D) corresponds to the sequence of steps of ˜D with even indices, and the lower path of γ(D) corresponds to the sequence of steps of ˜D with odd indices.
This map returns the cell poset of γ(D). In this partial order, the cells of the polyomino are the elements and a cell covers those cells with which it shares an edge and which are closer to the origin.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!