Identifier
- St000913: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[]=>1
[1]=>1
[2]=>1
[1,1]=>1
[3]=>1
[2,1]=>1
[1,1,1]=>1
[4]=>2
[3,1]=>1
[2,2]=>1
[2,1,1]=>1
[1,1,1,1]=>1
[5]=>4
[4,1]=>2
[3,2]=>2
[3,1,1]=>1
[2,2,1]=>1
[2,1,1,1]=>1
[1,1,1,1,1]=>1
[6]=>11
[5,1]=>4
[4,2]=>5
[4,1,1]=>2
[3,3]=>2
[3,2,1]=>2
[3,1,1,1]=>1
[2,2,2]=>1
[2,2,1,1]=>1
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>1
[7]=>33
[6,1]=>11
[5,2]=>12
[5,1,1]=>4
[4,3]=>10
[4,2,1]=>5
[4,1,1,1]=>2
[3,3,1]=>2
[3,2,2]=>3
[3,2,1,1]=>2
[3,1,1,1,1]=>1
[2,2,2,1]=>1
[2,2,1,1,1]=>1
[2,1,1,1,1,1]=>1
[1,1,1,1,1,1,1]=>1
[8]=>116
[7,1]=>33
[6,2]=>37
[6,1,1]=>11
[5,3]=>27
[5,2,1]=>12
[5,1,1,1]=>4
[4,4]=>19
[4,3,1]=>10
[4,2,2]=>9
[4,2,1,1]=>5
[4,1,1,1,1]=>2
[3,3,2]=>5
[3,3,1,1]=>2
[3,2,2,1]=>3
[3,2,1,1,1]=>2
[3,1,1,1,1,1]=>1
[2,2,2,2]=>1
[2,2,2,1,1]=>1
[2,2,1,1,1,1]=>1
[2,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1]=>1
[9]=>435
[8,1]=>116
[7,2]=>123
[7,1,1]=>33
[6,3]=>97
[6,2,1]=>37
[6,1,1,1]=>11
[5,4]=>99
[5,3,1]=>27
[5,2,2]=>25
[5,2,1,1]=>12
[5,1,1,1,1]=>4
[4,4,1]=>19
[4,3,2]=>28
[4,3,1,1]=>10
[4,2,2,1]=>9
[4,2,1,1,1]=>5
[4,1,1,1,1,1]=>2
[3,3,3]=>5
[3,3,2,1]=>5
[3,3,1,1,1]=>2
[3,2,2,2]=>4
[3,2,2,1,1]=>3
[3,2,1,1,1,1]=>2
[3,1,1,1,1,1,1]=>1
[2,2,2,2,1]=>1
[2,2,2,1,1,1]=>1
[2,2,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1]=>1
[10]=>1832
[9,1]=>435
[8,2]=>474
[8,1,1]=>116
[7,3]=>351
[7,2,1]=>123
[7,1,1,1]=>33
[6,4]=>384
[6,3,1]=>97
[6,2,2]=>85
[6,2,1,1]=>37
[6,1,1,1,1]=>11
[5,5]=>188
[5,4,1]=>99
[5,3,2]=>89
[5,3,1,1]=>27
[5,2,2,1]=>25
[5,2,1,1,1]=>12
[5,1,1,1,1,1]=>4
[4,4,2]=>61
[4,4,1,1]=>19
[4,3,3]=>42
[4,3,2,1]=>28
[4,3,1,1,1]=>10
[4,2,2,2]=>14
[4,2,2,1,1]=>9
[4,2,1,1,1,1]=>5
[4,1,1,1,1,1,1]=>2
[3,3,3,1]=>5
[3,3,2,2]=>9
[3,3,2,1,1]=>5
[3,3,1,1,1,1]=>2
[3,2,2,2,1]=>4
[3,2,2,1,1,1]=>3
[3,2,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1]=>1
[2,2,2,2,2]=>1
[2,2,2,2,1,1]=>1
[2,2,2,1,1,1,1]=>1
[2,2,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>8167
[10,1]=>1832
[9,2]=>1907
[9,1,1]=>435
[8,3]=>1470
[8,2,1]=>474
[8,1,1,1]=>116
[7,4]=>1551
[7,3,1]=>351
[7,2,2]=>308
[7,2,1,1]=>123
[7,1,1,1,1]=>33
[6,5]=>1407
[6,4,1]=>384
[6,3,2]=>341
[6,3,1,1]=>97
[6,2,2,1]=>85
[6,2,1,1,1]=>37
[6,1,1,1,1,1]=>11
[5,5,1]=>188
[5,4,2]=>349
[5,4,1,1]=>99
[5,3,3]=>145
[5,3,2,1]=>89
[5,3,1,1,1]=>27
[5,2,2,2]=>44
[5,2,2,1,1]=>25
[5,2,1,1,1,1]=>12
[5,1,1,1,1,1,1]=>4
[4,4,3]=>159
[4,4,2,1]=>61
[4,4,1,1,1]=>19
[4,3,3,1]=>42
[4,3,2,2]=>56
[4,3,2,1,1]=>28
[4,3,1,1,1,1]=>10
[4,2,2,2,1]=>14
[4,2,2,1,1,1]=>9
[4,2,1,1,1,1,1]=>5
[4,1,1,1,1,1,1,1]=>2
[3,3,3,2]=>14
[3,3,3,1,1]=>5
[3,3,2,2,1]=>9
[3,3,2,1,1,1]=>5
[3,3,1,1,1,1,1]=>2
[3,2,2,2,2]=>5
[3,2,2,2,1,1]=>4
[3,2,2,1,1,1,1]=>3
[3,2,1,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,1]=>1
[2,2,2,2,1,1,1]=>1
[2,2,2,1,1,1,1,1]=>1
[2,2,1,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>39700
[11,1]=>8167
[10,2]=>8593
[10,1,1]=>1832
[9,3]=>6314
[9,2,1]=>1907
[9,1,1,1]=>435
[8,4]=>7084
[8,3,1]=>1470
[8,2,2]=>1285
[8,2,1,1]=>474
[8,1,1,1,1]=>116
[7,5]=>6009
[7,4,1]=>1551
[7,3,2]=>1329
[7,3,1,1]=>351
[7,2,2,1]=>308
[7,2,1,1,1]=>123
[7,1,1,1,1,1]=>33
[6,6]=>3533
[6,5,1]=>1407
[6,4,2]=>1500
[6,4,1,1]=>384
[6,3,3]=>626
[6,3,2,1]=>341
[6,3,1,1,1]=>97
[6,2,2,2]=>163
[6,2,2,1,1]=>85
[6,2,1,1,1,1]=>37
[6,1,1,1,1,1,1]=>11
[5,5,2]=>740
[5,5,1,1]=>188
[5,4,3]=>982
[5,4,2,1]=>349
[5,4,1,1,1]=>99
[5,3,3,1]=>145
[5,3,2,2]=>203
[5,3,2,1,1]=>89
[5,3,1,1,1,1]=>27
[5,2,2,2,1]=>44
[5,2,2,1,1,1]=>25
[5,2,1,1,1,1,1]=>12
[5,1,1,1,1,1,1,1]=>4
[4,4,4]=>296
[4,4,3,1]=>159
[4,4,2,2]=>137
[4,4,2,1,1]=>61
[4,4,1,1,1,1]=>19
[4,3,3,2]=>126
[4,3,3,1,1]=>42
[4,3,2,2,1]=>56
[4,3,2,1,1,1]=>28
[4,3,1,1,1,1,1]=>10
[4,2,2,2,2]=>20
[4,2,2,2,1,1]=>14
[4,2,2,1,1,1,1]=>9
[4,2,1,1,1,1,1,1]=>5
[4,1,1,1,1,1,1,1,1]=>2
[3,3,3,3]=>14
[3,3,3,2,1]=>14
[3,3,3,1,1,1]=>5
[3,3,2,2,2]=>14
[3,3,2,2,1,1]=>9
[3,3,2,1,1,1,1]=>5
[3,3,1,1,1,1,1,1]=>2
[3,2,2,2,2,1]=>5
[3,2,2,2,1,1,1]=>4
[3,2,2,1,1,1,1,1]=>3
[3,2,1,1,1,1,1,1,1]=>2
[3,1,1,1,1,1,1,1,1,1]=>1
[2,2,2,2,2,2]=>1
[2,2,2,2,2,1,1]=>1
[2,2,2,2,1,1,1,1]=>1
[2,2,2,1,1,1,1,1,1]=>1
[2,2,1,1,1,1,1,1,1,1]=>1
[2,1,1,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
[5,4,3,1]=>982
[5,4,2,2]=>855
[5,4,2,1,1]=>349
[5,3,3,2]=>502
[5,3,3,1,1]=>145
[5,3,2,2,1]=>203
[4,4,3,2]=>518
[4,4,3,1,1]=>159
[4,4,2,2,1]=>137
[4,3,3,2,1]=>126
[5,4,3,2]=>3516
[5,4,3,1,1]=>982
[5,4,2,2,1]=>855
[5,3,3,2,1]=>502
[4,4,3,2,1]=>518
[5,4,3,2,1]=>3516
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of ways to refine the partition into singletons.
For example there is only one way to refine $[2,2]$: $[2,2] > [2,1,1] > [1,1,1,1]$. However, there are two ways to refine $[3,2]$: $[3,2] > [2,2,1] > [2,1,1,1] > [1,1,1,1,1$ and $[3,2] > [3,1,1] > [2,1,1,1] > [1,1,1,1,1]$.
In other words, this is the number of saturated chains in the refinement order from the bottom element to the given partition.
The sequence of values on the partitions with only one part is A002846.
For example there is only one way to refine $[2,2]$: $[2,2] > [2,1,1] > [1,1,1,1]$. However, there are two ways to refine $[3,2]$: $[3,2] > [2,2,1] > [2,1,1,1] > [1,1,1,1,1$ and $[3,2] > [3,1,1] > [2,1,1,1] > [1,1,1,1,1]$.
In other words, this is the number of saturated chains in the refinement order from the bottom element to the given partition.
The sequence of values on the partitions with only one part is A002846.
Code
def statistic(la): P = posets.IntegerPartitions(la.size()) H = P.hasse_diagram() e = H.vertices()[0] f = tuple(la) return len(H.all_simple_paths([f], [e], trivial=True))
Created
Jul 19, 2017 at 15:58 by Martin Rubey
Updated
Jan 17, 2018 at 23:29 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!