Identifier
Values
[1] => 10 => 0
[2] => 100 => 1
[1,1] => 110 => 1
[3] => 1000 => 2
[2,1] => 1010 => 2
[1,1,1] => 1110 => 2
[4] => 10000 => 3
[3,1] => 10010 => 3
[2,2] => 1100 => 0
[2,1,1] => 10110 => 3
[1,1,1,1] => 11110 => 3
[5] => 100000 => 4
[4,1] => 100010 => 4
[3,2] => 10100 => 1
[3,1,1] => 100110 => 4
[2,2,1] => 11010 => 1
[2,1,1,1] => 101110 => 4
[1,1,1,1,1] => 111110 => 4
[6] => 1000000 => 5
[5,1] => 1000010 => 5
[4,2] => 100100 => 2
[4,1,1] => 1000110 => 5
[3,3] => 11000 => 2
[3,2,1] => 101010 => 2
[3,1,1,1] => 1001110 => 5
[2,2,2] => 11100 => 2
[2,2,1,1] => 110110 => 2
[2,1,1,1,1] => 1011110 => 5
[1,1,1,1,1,1] => 1111110 => 5
[7] => 10000000 => 6
[6,1] => 10000010 => 6
[5,2] => 1000100 => 3
[5,1,1] => 10000110 => 6
[4,3] => 101000 => 3
[4,2,1] => 1001010 => 3
[4,1,1,1] => 10001110 => 6
[3,3,1] => 110010 => 3
[3,2,2] => 101100 => 3
[3,2,1,1] => 1010110 => 3
[3,1,1,1,1] => 10011110 => 6
[2,2,2,1] => 111010 => 3
[2,2,1,1,1] => 1101110 => 3
[2,1,1,1,1,1] => 10111110 => 6
[1,1,1,1,1,1,1] => 11111110 => 6
[8] => 100000000 => 7
[7,1] => 100000010 => 7
[6,2] => 10000100 => 4
[6,1,1] => 100000110 => 7
[5,3] => 1001000 => 4
[5,2,1] => 10001010 => 4
[5,1,1,1] => 100001110 => 7
[4,4] => 110000 => 4
[4,3,1] => 1010010 => 4
[4,2,2] => 1001100 => 4
[4,2,1,1] => 10010110 => 4
[4,1,1,1,1] => 100011110 => 7
[3,3,2] => 110100 => 4
[3,3,1,1] => 1100110 => 4
[3,2,2,1] => 1011010 => 4
[3,2,1,1,1] => 10101110 => 4
[3,1,1,1,1,1] => 100111110 => 7
[2,2,2,2] => 111100 => 4
[2,2,2,1,1] => 1110110 => 4
[2,2,1,1,1,1] => 11011110 => 4
[2,1,1,1,1,1,1] => 101111110 => 7
[1,1,1,1,1,1,1,1] => 111111110 => 7
[9] => 1000000000 => 8
[8,1] => 1000000010 => 8
[7,2] => 100000100 => 5
[7,1,1] => 1000000110 => 8
[6,3] => 10001000 => 5
[6,2,1] => 100001010 => 5
[6,1,1,1] => 1000001110 => 8
[5,4] => 1010000 => 5
[5,3,1] => 10010010 => 5
[5,2,2] => 10001100 => 5
[5,2,1,1] => 100010110 => 5
[5,1,1,1,1] => 1000011110 => 8
[4,4,1] => 1100010 => 5
[4,3,2] => 1010100 => 5
[4,3,1,1] => 10100110 => 5
[4,2,2,1] => 10011010 => 5
[4,2,1,1,1] => 100101110 => 5
[4,1,1,1,1,1] => 1000111110 => 8
[3,3,3] => 111000 => 0
[3,3,2,1] => 1101010 => 5
[3,3,1,1,1] => 11001110 => 5
[3,2,2,2] => 1011100 => 5
[3,2,2,1,1] => 10110110 => 5
[3,2,1,1,1,1] => 101011110 => 5
[3,1,1,1,1,1,1] => 1001111110 => 8
[2,2,2,2,1] => 1111010 => 5
[2,2,2,1,1,1] => 11101110 => 5
[2,2,1,1,1,1,1] => 110111110 => 5
[2,1,1,1,1,1,1,1] => 1011111110 => 8
[1,1,1,1,1,1,1,1,1] => 1111111110 => 8
[10] => 10000000000 => 9
[9,1] => 10000000010 => 9
[8,2] => 1000000100 => 6
[8,1,1] => 10000000110 => 9
[7,3] => 100001000 => 6
>>> Load all 504 entries. <<<
[7,2,1] => 1000001010 => 6
[7,1,1,1] => 10000001110 => 9
[6,4] => 10010000 => 6
[6,3,1] => 100010010 => 6
[6,2,2] => 100001100 => 6
[6,2,1,1] => 1000010110 => 6
[6,1,1,1,1] => 10000011110 => 9
[5,5] => 1100000 => 6
[5,4,1] => 10100010 => 6
[5,3,2] => 10010100 => 6
[5,3,1,1] => 100100110 => 6
[5,2,2,1] => 100011010 => 6
[5,2,1,1,1] => 1000101110 => 6
[5,1,1,1,1,1] => 10000111110 => 9
[4,4,2] => 1100100 => 6
[4,4,1,1] => 11000110 => 6
[4,3,3] => 1011000 => 1
[4,3,2,1] => 10101010 => 6
[4,3,1,1,1] => 101001110 => 6
[4,2,2,2] => 10011100 => 6
[4,2,2,1,1] => 100110110 => 6
[4,2,1,1,1,1] => 1001011110 => 6
[4,1,1,1,1,1,1] => 10001111110 => 9
[3,3,3,1] => 1110010 => 1
[3,3,2,2] => 1101100 => 6
[3,3,2,1,1] => 11010110 => 6
[3,3,1,1,1,1] => 110011110 => 6
[3,2,2,2,1] => 10111010 => 6
[3,2,2,1,1,1] => 101101110 => 6
[3,2,1,1,1,1,1] => 1010111110 => 6
[3,1,1,1,1,1,1,1] => 10011111110 => 9
[2,2,2,2,2] => 1111100 => 6
[2,2,2,2,1,1] => 11110110 => 6
[2,2,2,1,1,1,1] => 111011110 => 6
[2,2,1,1,1,1,1,1] => 1101111110 => 6
[2,1,1,1,1,1,1,1,1] => 10111111110 => 9
[1,1,1,1,1,1,1,1,1,1] => 11111111110 => 9
[11] => 100000000000 => 10
[10,1] => 100000000010 => 10
[9,2] => 10000000100 => 7
[8,3] => 1000001000 => 7
[8,2,1] => 10000001010 => 7
[7,4] => 100010000 => 7
[7,3,1] => 1000010010 => 7
[7,2,2] => 1000001100 => 7
[7,2,1,1] => 10000010110 => 7
[6,5] => 10100000 => 7
[6,4,1] => 100100010 => 7
[6,3,2] => 100010100 => 7
[6,3,1,1] => 1000100110 => 7
[6,2,1,1,1] => 10000101110 => 7
[6,1,1,1,1,1] => 100000111110 => 10
[5,5,1] => 11000010 => 7
[5,4,2] => 10100100 => 7
[5,4,1,1] => 101000110 => 7
[5,3,3] => 10011000 => 2
[5,3,2,1] => 100101010 => 7
[5,3,1,1,1] => 1001001110 => 7
[5,2,2,2] => 100011100 => 7
[5,2,2,1,1] => 1000110110 => 7
[5,2,1,1,1,1] => 10001011110 => 7
[4,4,3] => 1101000 => 2
[4,4,2,1] => 11001010 => 7
[4,4,1,1,1] => 110001110 => 7
[4,3,3,1] => 10110010 => 2
[4,3,2,2] => 10101100 => 7
[4,3,2,1,1] => 101010110 => 7
[4,3,1,1,1,1] => 1010011110 => 7
[4,2,2,2,1] => 100111010 => 7
[4,2,1,1,1,1,1] => 10010111110 => 7
[3,3,3,2] => 1110100 => 2
[3,3,3,1,1] => 11100110 => 2
[3,3,2,2,1] => 11011010 => 7
[3,3,2,1,1,1] => 110101110 => 7
[3,3,1,1,1,1,1] => 1100111110 => 7
[3,2,2,2,2] => 10111100 => 7
[3,2,2,2,1,1] => 101110110 => 7
[3,2,1,1,1,1,1,1] => 10101111110 => 7
[2,2,2,2,2,1] => 11111010 => 7
[2,2,2,2,1,1,1] => 111101110 => 7
[2,2,2,1,1,1,1,1] => 1110111110 => 7
[2,2,1,1,1,1,1,1,1] => 11011111110 => 7
[12] => 1000000000000 => 11
[10,2] => 100000000100 => 8
[9,3] => 10000001000 => 8
[8,3,1] => 10000010010 => 8
[7,5] => 100100000 => 8
[7,3,1,1] => 10000100110 => 8
[6,6] => 11000000 => 8
[6,5,1] => 101000010 => 8
[6,4,2] => 100100100 => 8
[6,4,1,1] => 1001000110 => 8
[6,3,3] => 100011000 => 3
[6,3,2,1] => 1000101010 => 8
[6,3,1,1,1] => 10001001110 => 8
[5,5,2] => 11000100 => 8
[5,5,1,1] => 110000110 => 8
[5,4,3] => 10101000 => 3
[5,4,2,1] => 101001010 => 8
[5,4,1,1,1] => 1010001110 => 8
[5,3,3,1] => 100110010 => 3
[5,3,2,2] => 100101100 => 8
[5,3,2,1,1] => 1001010110 => 8
[5,3,1,1,1,1] => 10010011110 => 8
[5,2,2,2,1] => 1000111010 => 8
[4,4,4] => 1110000 => 3
[4,4,3,1] => 11010010 => 3
[4,4,2,2] => 11001100 => 8
[4,4,2,1,1] => 110010110 => 8
[4,4,1,1,1,1] => 1100011110 => 8
[4,3,3,2] => 10110100 => 3
[4,3,3,1,1] => 101100110 => 3
[4,3,2,2,1] => 101011010 => 8
[4,3,1,1,1,1,1] => 10100111110 => 8
[4,2,2,2,2] => 100111100 => 8
[3,3,3,3] => 1111000 => 3
[3,3,3,2,1] => 11101010 => 3
[3,3,3,1,1,1] => 111001110 => 3
[3,3,2,2,2] => 11011100 => 8
[3,3,2,2,1,1] => 110110110 => 8
[3,3,2,1,1,1,1] => 1101011110 => 8
[3,3,1,1,1,1,1,1] => 11001111110 => 8
[3,2,2,2,2,1] => 101111010 => 8
[2,2,2,2,2,2] => 11111100 => 8
[2,2,2,2,2,1,1] => 111110110 => 8
[2,2,2,1,1,1,1,1,1] => 11101111110 => 8
[13] => 10000000000000 => 12
[9,4] => 10000010000 => 9
[8,5] => 1000100000 => 9
[8,4,1] => 10000100010 => 9
[8,3,2] => 10000010100 => 9
[7,6] => 101000000 => 9
[6,6,1] => 110000010 => 9
[6,5,2] => 101000100 => 9
[6,4,3] => 100101000 => 4
[6,4,2,1] => 1001001010 => 9
[6,3,3,1] => 1000110010 => 4
[6,3,2,2] => 1000101100 => 9
[6,3,1,1,1,1] => 100010011110 => 9
[6,2,2,1,1,1] => 100001101110 => 9
[5,5,3] => 11001000 => 4
[5,5,2,1] => 110001010 => 9
[5,5,1,1,1] => 1100001110 => 9
[5,4,4] => 10110000 => 4
[5,4,3,1] => 101010010 => 4
[5,4,2,2] => 101001100 => 9
[5,4,2,1,1] => 1010010110 => 9
[5,3,3,2] => 100110100 => 4
[5,3,3,1,1] => 1001100110 => 4
[5,3,2,2,1] => 1001011010 => 9
[5,2,2,2,2] => 1000111100 => 9
[4,4,4,1] => 11100010 => 4
[4,4,3,2] => 11010100 => 4
[4,4,3,1,1] => 110100110 => 4
[4,4,2,2,1] => 110011010 => 9
[4,4,2,1,1,1] => 1100101110 => 9
[4,4,1,1,1,1,1] => 11000111110 => 9
[4,3,3,3] => 10111000 => 4
[4,3,3,2,1] => 101101010 => 4
[4,3,2,2,2] => 101011100 => 9
[3,3,3,3,1] => 11110010 => 4
[3,3,3,2,2] => 11101100 => 4
[3,3,3,2,1,1] => 111010110 => 4
[3,3,3,1,1,1,1] => 1110011110 => 4
[3,3,2,2,2,1] => 110111010 => 9
[3,2,2,2,2,2] => 101111100 => 9
[2,2,2,2,2,2,1] => 111111010 => 9
[2,2,2,2,2,1,1,1] => 1111101110 => 9
[14] => 100000000000000 => 13
[8,5,1] => 10001000010 => 10
[8,4,2] => 10000100100 => 10
[7,7] => 110000000 => 10
[7,4,2,1] => 10001001010 => 10
[6,6,2] => 110000100 => 10
[6,6,1,1] => 1100000110 => 10
[6,5,3] => 101001000 => 5
[6,5,2,1] => 1010001010 => 10
[6,4,4] => 100110000 => 5
[6,4,3,1] => 1001010010 => 5
[6,4,2,2] => 1001001100 => 10
[6,3,3,2] => 1000110100 => 5
[6,2,2,2,2] => 10000111100 => 10
[5,5,4] => 11010000 => 5
[5,5,3,1] => 110010010 => 5
[5,5,2,2] => 110001100 => 10
[5,5,2,1,1] => 1100010110 => 10
[5,5,1,1,1,1] => 11000011110 => 10
[5,4,4,1] => 101100010 => 5
[5,4,3,2] => 101010100 => 5
[5,4,3,1,1] => 1010100110 => 5
[5,4,2,2,1] => 1010011010 => 10
[5,3,3,3] => 100111000 => 5
[5,3,3,2,1] => 1001101010 => 5
[4,4,4,2] => 11100100 => 5
[4,4,4,1,1] => 111000110 => 5
[4,4,3,3] => 11011000 => 5
[4,4,3,2,1] => 110101010 => 5
[4,4,3,1,1,1] => 1101001110 => 5
[4,4,2,2,2] => 110011100 => 10
[4,3,3,3,1] => 101110010 => 5
[4,3,3,2,2] => 101101100 => 5
[3,3,3,3,2] => 11110100 => 5
[3,3,3,3,1,1] => 111100110 => 5
[3,3,3,2,2,1] => 111011010 => 5
[3,3,2,2,2,2] => 110111100 => 10
[2,2,2,2,2,2,2] => 111111100 => 10
[15] => 1000000000000000 => 14
[8,5,2] => 10001000100 => 11
[8,4,3] => 10000101000 => 6
[7,7,1] => 1100000010 => 11
[7,5,2,1] => 10010001010 => 11
[7,4,4] => 1000110000 => 6
[7,4,3,1] => 10001010010 => 6
[6,6,3] => 110001000 => 6
[6,6,2,1] => 1100001010 => 11
[6,6,1,1,1] => 11000001110 => 11
[6,5,4] => 101010000 => 6
[6,5,3,1] => 1010010010 => 6
[6,5,2,2] => 1010001100 => 11
[6,5,1,1,1,1] => 101000011110 => 11
[6,4,4,1] => 1001100010 => 6
[6,4,3,2] => 1001010100 => 6
[6,4,2,1,1,1] => 100100101110 => 11
[6,3,3,3] => 1000111000 => 6
[6,3,2,2,1,1] => 100010110110 => 11
[6,2,2,2,2,1] => 100001111010 => 11
[5,5,5] => 11100000 => 6
[5,5,4,1] => 110100010 => 6
[5,5,3,2] => 110010100 => 6
[5,5,3,1,1] => 1100100110 => 6
[5,5,2,2,1] => 1100011010 => 11
[5,4,4,2] => 101100100 => 6
[5,4,4,1,1] => 1011000110 => 6
[5,4,3,3] => 101011000 => 6
[5,4,3,2,1] => 1010101010 => 6
[5,4,2,2,2] => 1010011100 => 11
[5,3,3,3,1] => 1001110010 => 6
[5,3,3,2,2] => 1001101100 => 6
[4,4,4,3] => 11101000 => 6
[4,4,4,2,1] => 111001010 => 6
[4,4,3,3,1] => 110110010 => 6
[4,4,3,2,2] => 110101100 => 6
[4,4,3,2,1,1] => 1101010110 => 6
[4,3,3,3,2] => 101110100 => 6
[3,3,3,3,3] => 11111000 => 6
[3,3,3,3,2,1] => 111101010 => 6
[3,3,3,3,1,1,1] => 1111001110 => 6
[3,3,3,2,2,2] => 111011100 => 6
[12,4] => 10000000010000 => 12
[10,6] => 100001000000 => 12
[8,8] => 1100000000 => 12
[8,6,2] => 10010000100 => 12
[8,5,3] => 10001001000 => 7
[7,7,2] => 1100000100 => 12
[7,7,1,1] => 11000000110 => 12
[7,5,3,1] => 10010010010 => 7
[7,4,3,2] => 10001010100 => 7
[6,6,4] => 110010000 => 7
[6,6,3,1] => 1100010010 => 7
[6,5,5] => 101100000 => 7
[6,5,4,1] => 1010100010 => 7
[6,5,3,2] => 1010010100 => 7
[6,4,4,2] => 1001100100 => 7
[6,4,3,3] => 1001011000 => 7
[6,4,3,2,1] => 10010101010 => 7
[6,2,2,2,2,2] => 100001111100 => 12
[5,5,5,1] => 111000010 => 7
[5,5,4,2] => 110100100 => 7
[5,5,3,3] => 110011000 => 7
[5,5,3,2,1] => 1100101010 => 7
[5,5,2,2,2] => 1100011100 => 12
[5,4,4,3] => 101101000 => 7
[5,4,4,2,1] => 1011001010 => 7
[5,4,3,3,1] => 1010110010 => 7
[5,4,3,2,2] => 1010101100 => 7
[5,3,3,3,2] => 1001110100 => 7
[4,4,4,4] => 11110000 => 0
[4,4,4,3,1] => 111010010 => 7
[4,4,4,2,2] => 111001100 => 7
[4,4,3,3,2] => 110110100 => 7
[4,3,3,3,3] => 101111000 => 7
[3,3,3,3,3,1] => 111110010 => 7
[3,3,3,3,2,2] => 111101100 => 7
[2,2,2,2,2,2,2,2] => 1111111100 => 12
[8,8,1] => 11000000010 => 13
[8,6,3] => 10010001000 => 8
[7,7,3] => 1100001000 => 8
[7,6,3,1] => 10100010010 => 8
[7,5,4,1] => 10010100010 => 8
[7,5,3,2] => 10010010100 => 8
[7,4,3,2,1] => 100010101010 => 8
[6,6,5] => 110100000 => 8
[6,6,4,1] => 1100100010 => 8
[6,6,3,2] => 1100010100 => 8
[6,6,2,1,1,1] => 110000101110 => 13
[6,5,5,1] => 1011000010 => 8
[6,5,4,2] => 1010100100 => 8
[6,5,3,3] => 1010011000 => 8
[6,5,3,2,1] => 10100101010 => 8
[6,5,2,2,1,1] => 101000110110 => 13
[6,4,4,3] => 1001101000 => 8
[6,4,4,1,1,1] => 100110001110 => 8
[6,4,3,2,1,1] => 100101010110 => 8
[6,4,2,2,2,1] => 100100111010 => 13
[6,3,3,3,1,1] => 100011100110 => 8
[6,3,2,2,2,2] => 100010111100 => 13
[5,5,5,2] => 111000100 => 8
[5,5,5,1,1] => 1110000110 => 8
[5,5,4,3] => 110101000 => 8
[5,5,4,2,1] => 1101001010 => 8
[5,5,3,3,1] => 1100110010 => 8
[5,5,3,2,2] => 1100101100 => 8
[5,4,4,4] => 101110000 => 1
[5,4,4,3,1] => 1011010010 => 8
[5,4,4,2,2] => 1011001100 => 8
[5,4,3,3,2] => 1010110100 => 8
[5,3,3,3,3] => 1001111000 => 8
[4,4,4,4,1] => 111100010 => 1
[4,4,4,3,2] => 111010100 => 8
[4,4,3,3,3] => 110111000 => 8
[3,3,3,3,3,2] => 111110100 => 8
[3,2,2,2,2,2,2,2] => 10111111100 => 13
[6,5,4,3,2,1] => 101010101010 => 12
[5,5,4,3,2,1] => 11010101010 => 11
[4,4,4,3,2,1] => 1110101010 => 9
[6,4,4,2,2,1] => 100110011010 => 10
[6,5,3,3,1,1] => 101001100110 => 10
[6,5,4,3,2] => 10101010100 => 11
[5,5,4,3,2] => 1101010100 => 10
[5,4,4,3,2] => 1011010100 => 9
[5,5,3,3,2] => 1100110100 => 9
[5,5,4,2,2] => 1101001100 => 9
[6,5,4,3,1] => 10101010010 => 10
[5,5,4,3,1] => 1101010010 => 9
[6,5,4,2,1] => 10101001010 => 9
[6,5,4,3] => 1010101000 => 9
[7,6,5,4,3,2,1] => 10101010101010 => 12
[5,5,5,4,3,2,1] => 111010101010 => 9
[6,6,5,4,3,2] => 110101010100 => 10
[6,5,5,4,3,2] => 101101010100 => 9
[5,5,5,4,3,2] => 11101010100 => 8
[6,5,4,4,3,2] => 101011010100 => 8
[6,5,4,3,3,2] => 101010110100 => 14
[6,5,4,3,2,2] => 101010101100 => 13
[4,4,4,3,2,2] => 1110101100 => 10
[6,6,2,2,2,2] => 110000111100 => 16
[6,6,5,4,3,1] => 110101010010 => 9
[6,5,5,4,3,1] => 101101010010 => 8
[4,4,4,4,3,1] => 1111010010 => 4
[4,4,4,4,2,1] => 1111001010 => 3
[6,6,5,3,2,1] => 110100101010 => 14
[6,6,4,3,2,1] => 110010101010 => 13
[7,6,5,4,3] => 101010101000 => 9
[6,6,5,4,3] => 11010101000 => 8
[5,4,4,4,3] => 1011101000 => 4
[5,4,3,3,3] => 1010111000 => 9
[7,6,5,4,2] => 101010100100 => 8
[4,4,4,4,2] => 111100100 => 2
[7,6,5,3,2] => 101010010100 => 14
[7,6,4,3,2] => 101001010100 => 13
[7,5,4,3,2] => 100101010100 => 12
[7,6,5,4,1] => 101010100010 => 7
[7,5,4,3,1] => 100101010010 => 11
[7,6,5,2,1] => 101010001010 => 12
[7,6,4,2,1] => 101001001010 => 11
[7,5,4,2,1] => 100101001010 => 10
[7,6,3,2,1] => 101000101010 => 10
[6,5,5,4] => 1011010000 => 4
[7,6,5,2] => 10101000100 => 11
[2,2,2,2,2,2,2,2,2] => 11111111100 => 14
[3,3,3,3,3,3] => 111111000 => 9
[3,3,3,3,3,3,3,3] => 11111111000 => 15
[4,4,4,4,4] => 111110000 => 4
[4,4,4,3,3,3] => 1110111000 => 12
[4,4,4,4,4,4] => 1111110000 => 8
[5,5,5,5] => 111100000 => 4
[2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2] => 111111111111111100 => 28
[6,6,6,6] => 1111000000 => 8
[6,2,2,2,2,2,2] => 1000011111100 => 14
[6,6,6] => 111000000 => 9
[10,4,4] => 1000000110000 => 9
[10,10] => 110000000000 => 16
[10,10,10,10] => 11110000000000 => 24
[5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5] => 11111111111111111111111100000 => 95
[5,5,5,5,5,5,5,5,5,5,5,5] => 11111111111100000 => 35
[15,15] => 11000000000000000 => 26
[5,5,5,5,5,5] => 11111100000 => 5
[15,5,5] => 100000000001100000 => 16
[8,7,6,5,4,3,2,1] => 1010101010101010 => 20
[9,8,7,6,5,4,3,2,1] => 101010101010101010 => 20
[5,5,5,5,5] => 1111100000 => 0
[9,9] => 11000000000 => 14
[7,7,6,5,4,3,2] => 11010101010100 => 18
[5,5,5,5,3,2,1] => 111100101010 => 10
[6,5,5,5] => 1011100000 => 5
[5,4,4,4,4] => 1011110000 => 5
[7,6,6,5,4,3,2] => 10110101010100 => 17
[8,7,7,6,5,4,3,2] => 1011010101010100 => 17
[8,8,7,6,5,4,3,2] => 1101010101010100 => 18
[4,4,4,4,4,1] => 1111100010 => 5
[5,5,5,5,1] => 1111000010 => 5
[7,7,5,4,3,2,1] => 11001010101010 => 13
[7,6,5,4,3,2,2] => 10101010101100 => 13
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The number of internal inversions of a binary word.
Let $\bar w$ be the non-decreasing rearrangement of $w$, that is, $\bar w$ is sorted.
An internal inversion is a pair $i < j$ such that $w_i > w_j$ and $\bar w_i = \bar w_j$. For example, the word $110$ has two inversions, but only the second is internal.
Map
to binary word
Description
Return the partition as binary word, by traversing its shape from the first row to the last row, down steps as 1 and left steps as 0.