Identifier
-
Mp00276:
Graphs
—to edge-partition of biconnected components⟶
Integer partitions
Mp00230: Integer partitions —parallelogram polyomino⟶ Dyck paths
Mp00227: Dyck paths —Delest-Viennot-inverse⟶ Dyck paths
St000932: Dyck paths ⟶ ℤ (values match St001067The number of simple modules of dominant dimension at least two in the corresponding Nakayama algebra., St001223Number of indecomposable projective non-injective modules P such that the modules X and Y in a an Auslander-Reiten sequence ending at P are torsionless.)
Values
([(0,2),(1,2)],3) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,1),(0,2),(1,2)],3) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(1,3),(2,3)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(0,3),(1,2)],4) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(1,2),(1,3),(2,3)],4) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(0,3),(1,2),(1,3),(2,3)],4) => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 0
([(0,2),(0,3),(1,2),(1,3)],4) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,1),(0,2),(0,3),(1,2),(1,3),(2,3)],4) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(2,4),(3,4)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(1,4),(2,3)],5) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(2,3),(2,4),(3,4)],5) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(1,4),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 0
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(1,3),(1,4),(2,3),(2,4)],5) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(2,4),(3,4)],5) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 0
([(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,3),(0,4),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(0,1),(2,3),(2,4),(3,4)],5) => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 0
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => 1
([(0,3),(0,4),(1,2),(1,4),(2,3)],5) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,1),(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,3),(0,4),(1,2),(1,4),(2,3),(2,4),(3,4)],5) => [7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(2,3),(2,4),(3,4)],5) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 0
([(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,4),(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)],5) => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 0
([(0,3),(0,4),(1,2),(1,3),(1,4),(2,3),(2,4)],5) => [7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
([(3,5),(4,5)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
([(2,5),(3,4)],6) => [1,1] => [1,1,0,0] => [1,0,1,0] => 1
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(3,4),(3,5),(4,5)],6) => [3] => [1,0,1,0,1,0] => [1,1,1,0,0,0] => 0
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(2,5),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 0
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(2,4),(2,5),(3,4),(3,5)],6) => [4] => [1,0,1,0,1,0,1,0] => [1,1,1,1,0,0,0,0] => 0
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
([(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
([(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 0
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 1
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
([(0,5),(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)],6) => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 0
([(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 1
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1,0,1,0,0] => [1,0,1,0,1,0] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0] => 3
([(1,2),(3,4),(3,5),(4,5)],6) => [3,1] => [1,0,1,0,1,1,0,0] => [1,1,1,0,0,0,1,0] => 0
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [1,1,1,0,1,0,0,0] => [1,1,1,0,1,0,0,0] => 1
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4)],6) => [5] => [1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,0,0,0,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
([(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
([(0,5),(1,2),(1,4),(2,3),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 0
([(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 0
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(0,5),(1,2),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [6,1] => [1,0,1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,1,0,0,0,0,0,0,1,0] => 0
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 1
([(1,4),(1,5),(2,3),(2,5),(3,4),(3,5),(4,5)],6) => [7] => [1,0,1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,1,0,0,0,0,0,0,0] => 0
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,1,0,1,0,1,0,1,0,0] => [1,0,1,0,1,0,1,0,1,0] => 4
([(0,1),(2,4),(2,5),(3,4),(3,5)],6) => [4,1] => [1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,0,0,0,0,1,0] => 0
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,0,1,0,1,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0] => 1
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,0,0,0,0,1,0,1,0] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(0,1),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1] => [1,0,1,0,1,0,1,0,1,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0] => 0
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,0,1,0,1,1,0,1,0,1,0,0] => [1,1,1,0,0,0,1,0,1,0,1,0] => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,0,0,1,0,0,0] => 0
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => [1,0,1,0,1,0,1,0,1,1,0,1,0,0] => [1,1,1,1,1,0,0,0,0,0,1,0,1,0] => 1
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [1,1,1,0,1,0,0,1,0,0] => [1,1,1,0,1,0,0,0,1,0] => 1
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [1,0,1,0,1,1,1,0,1,0,0,0] => [1,1,1,1,1,0,0,0,1,0,0,0] => 0
([(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6] => [1,0,1,0,1,0,1,0,1,0,1,0] => [1,1,1,1,1,1,0,0,0,0,0,0] => 0
>>> Load all 310 entries. <<<
search for individual values
searching the database for the individual values of this statistic
Description
The number of occurrences of the pattern UDU in a Dyck path.
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
The number of Dyck paths with statistic value 0 are counted by the Motzkin numbers [1].
Map
parallelogram polyomino
Description
Return the Dyck path corresponding to the partition interpreted as a parallogram polyomino.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
The Ferrers diagram of an integer partition can be interpreted as a parallogram polyomino, such that each part corresponds to a column.
This map returns the corresponding Dyck path.
Map
Delest-Viennot-inverse
Description
Return the Dyck path obtained by applying the inverse of Delest-Viennot's bijection to the corresponding parallelogram polyomino.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Let $D$ be a Dyck path of semilength $n$. The parallelogram polyomino $\gamma(D)$ is defined as follows: let $\tilde D = d_0 d_1 \dots d_{2n+1}$ be the Dyck path obtained by prepending an up step and appending a down step to $D$. Then, the upper path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with even indices, and the lower path of $\gamma(D)$ corresponds to the sequence of steps of $\tilde D$ with odd indices.
The Delest-Viennot bijection $\beta$ returns the parallelogram polyomino, whose column heights are the heights of the peaks of the Dyck path, and the intersection heights between columns are the heights of the valleys of the Dyck path.
This map returns the Dyck path $(\beta^{(-1)}\circ\gamma)(D)$.
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.
The biconnected components are also known as blocks of a graph.
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!