Identifier
Values
[2] => 2
[1,1] => 1
[3] => 3
[2,1] => 2
[1,1,1] => 1
[4] => 5
[3,1] => 3
[2,2] => 4
[2,1,1] => 2
[1,1,1,1] => 1
[5] => 7
[4,1] => 5
[3,2] => 6
[3,1,1] => 3
[2,2,1] => 4
[2,1,1,1] => 2
[1,1,1,1,1] => 1
[6] => 11
[5,1] => 7
[4,2] => 10
[4,1,1] => 5
[3,3] => 9
[3,2,1] => 6
[3,1,1,1] => 3
[2,2,2] => 8
[2,2,1,1] => 4
[2,1,1,1,1] => 2
[1,1,1,1,1,1] => 1
[7] => 15
[6,1] => 11
[5,2] => 14
[5,1,1] => 7
[4,3] => 15
[4,2,1] => 10
[4,1,1,1] => 5
[3,3,1] => 9
[3,2,2] => 12
[3,2,1,1] => 6
[3,1,1,1,1] => 3
[2,2,2,1] => 8
[2,2,1,1,1] => 4
[2,1,1,1,1,1] => 2
[1,1,1,1,1,1,1] => 1
[8] => 22
[7,1] => 15
[6,2] => 22
[6,1,1] => 11
[5,3] => 21
[5,2,1] => 14
[5,1,1,1] => 7
[4,4] => 25
[4,3,1] => 15
[4,2,2] => 20
[4,2,1,1] => 10
[4,1,1,1,1] => 5
[3,3,2] => 18
[3,3,1,1] => 9
[3,2,2,1] => 12
[3,2,1,1,1] => 6
[3,1,1,1,1,1] => 3
[2,2,2,2] => 16
[2,2,2,1,1] => 8
[2,2,1,1,1,1] => 4
[2,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1] => 1
[9] => 30
[8,1] => 22
[7,2] => 30
[7,1,1] => 15
[6,3] => 33
[6,2,1] => 22
[6,1,1,1] => 11
[5,4] => 35
[5,3,1] => 21
[5,2,2] => 28
[5,2,1,1] => 14
[5,1,1,1,1] => 7
[4,4,1] => 25
[4,3,2] => 30
[4,3,1,1] => 15
[4,2,2,1] => 20
[4,2,1,1,1] => 10
[4,1,1,1,1,1] => 5
[3,3,3] => 27
[3,3,2,1] => 18
[3,3,1,1,1] => 9
[3,2,2,2] => 24
[3,2,2,1,1] => 12
[3,2,1,1,1,1] => 6
[3,1,1,1,1,1,1] => 3
[2,2,2,2,1] => 16
[2,2,2,1,1,1] => 8
[2,2,1,1,1,1,1] => 4
[2,1,1,1,1,1,1,1] => 2
[1,1,1,1,1,1,1,1,1] => 1
[10] => 42
[9,1] => 30
[8,2] => 44
[8,1,1] => 22
[7,3] => 45
[7,2,1] => 30
>>> Load all 270 entries. <<<
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of multipartitions of sizes given by an integer partition.
This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Code
def statistic(L):
return prod(Partitions(i).cardinality() for i in L)
Created
Aug 11, 2017 at 16:56 by Christian Stump
Updated
Aug 11, 2017 at 16:56 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!