Identifier
- St000933: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>2
[1,1]=>1
[3]=>3
[2,1]=>2
[1,1,1]=>1
[4]=>5
[3,1]=>3
[2,2]=>4
[2,1,1]=>2
[1,1,1,1]=>1
[5]=>7
[4,1]=>5
[3,2]=>6
[3,1,1]=>3
[2,2,1]=>4
[2,1,1,1]=>2
[1,1,1,1,1]=>1
[6]=>11
[5,1]=>7
[4,2]=>10
[4,1,1]=>5
[3,3]=>9
[3,2,1]=>6
[3,1,1,1]=>3
[2,2,2]=>8
[2,2,1,1]=>4
[2,1,1,1,1]=>2
[1,1,1,1,1,1]=>1
[7]=>15
[6,1]=>11
[5,2]=>14
[5,1,1]=>7
[4,3]=>15
[4,2,1]=>10
[4,1,1,1]=>5
[3,3,1]=>9
[3,2,2]=>12
[3,2,1,1]=>6
[3,1,1,1,1]=>3
[2,2,2,1]=>8
[2,2,1,1,1]=>4
[2,1,1,1,1,1]=>2
[1,1,1,1,1,1,1]=>1
[8]=>22
[7,1]=>15
[6,2]=>22
[6,1,1]=>11
[5,3]=>21
[5,2,1]=>14
[5,1,1,1]=>7
[4,4]=>25
[4,3,1]=>15
[4,2,2]=>20
[4,2,1,1]=>10
[4,1,1,1,1]=>5
[3,3,2]=>18
[3,3,1,1]=>9
[3,2,2,1]=>12
[3,2,1,1,1]=>6
[3,1,1,1,1,1]=>3
[2,2,2,2]=>16
[2,2,2,1,1]=>8
[2,2,1,1,1,1]=>4
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>1
[9]=>30
[8,1]=>22
[7,2]=>30
[7,1,1]=>15
[6,3]=>33
[6,2,1]=>22
[6,1,1,1]=>11
[5,4]=>35
[5,3,1]=>21
[5,2,2]=>28
[5,2,1,1]=>14
[5,1,1,1,1]=>7
[4,4,1]=>25
[4,3,2]=>30
[4,3,1,1]=>15
[4,2,2,1]=>20
[4,2,1,1,1]=>10
[4,1,1,1,1,1]=>5
[3,3,3]=>27
[3,3,2,1]=>18
[3,3,1,1,1]=>9
[3,2,2,2]=>24
[3,2,2,1,1]=>12
[3,2,1,1,1,1]=>6
[3,1,1,1,1,1,1]=>3
[2,2,2,2,1]=>16
[2,2,2,1,1,1]=>8
[2,2,1,1,1,1,1]=>4
[2,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1]=>1
[10]=>42
[9,1]=>30
[8,2]=>44
[8,1,1]=>22
[7,3]=>45
[7,2,1]=>30
[7,1,1,1]=>15
[6,4]=>55
[6,3,1]=>33
[6,2,2]=>44
[6,2,1,1]=>22
[6,1,1,1,1]=>11
[5,5]=>49
[5,4,1]=>35
[5,3,2]=>42
[5,3,1,1]=>21
[5,2,2,1]=>28
[5,2,1,1,1]=>14
[5,1,1,1,1,1]=>7
[4,4,2]=>50
[4,4,1,1]=>25
[4,3,3]=>45
[4,3,2,1]=>30
[4,3,1,1,1]=>15
[4,2,2,2]=>40
[4,2,2,1,1]=>20
[4,2,1,1,1,1]=>10
[4,1,1,1,1,1,1]=>5
[3,3,3,1]=>27
[3,3,2,2]=>36
[3,3,2,1,1]=>18
[3,3,1,1,1,1]=>9
[3,2,2,2,1]=>24
[3,2,2,1,1,1]=>12
[3,2,1,1,1,1,1]=>6
[3,1,1,1,1,1,1,1]=>3
[2,2,2,2,2]=>32
[2,2,2,2,1,1]=>16
[2,2,2,1,1,1,1]=>8
[2,2,1,1,1,1,1,1]=>4
[2,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1]=>1
[11]=>56
[10,1]=>42
[9,2]=>60
[9,1,1]=>30
[8,3]=>66
[8,2,1]=>44
[8,1,1,1]=>22
[7,4]=>75
[7,3,1]=>45
[7,2,2]=>60
[7,2,1,1]=>30
[7,1,1,1,1]=>15
[6,5]=>77
[6,4,1]=>55
[6,3,2]=>66
[6,3,1,1]=>33
[6,2,2,1]=>44
[6,2,1,1,1]=>22
[6,1,1,1,1,1]=>11
[5,5,1]=>49
[5,4,2]=>70
[5,4,1,1]=>35
[5,3,3]=>63
[5,3,2,1]=>42
[5,3,1,1,1]=>21
[5,2,2,2]=>56
[5,2,2,1,1]=>28
[5,2,1,1,1,1]=>14
[5,1,1,1,1,1,1]=>7
[4,4,3]=>75
[4,4,2,1]=>50
[4,4,1,1,1]=>25
[4,3,3,1]=>45
[4,3,2,2]=>60
[4,3,2,1,1]=>30
[4,3,1,1,1,1]=>15
[4,2,2,2,1]=>40
[4,2,2,1,1,1]=>20
[4,2,1,1,1,1,1]=>10
[4,1,1,1,1,1,1,1]=>5
[3,3,3,2]=>54
[3,3,3,1,1]=>27
[3,3,2,2,1]=>36
[3,3,2,1,1,1]=>18
[3,3,1,1,1,1,1]=>9
[3,2,2,2,2]=>48
[3,2,2,2,1,1]=>24
[3,2,2,1,1,1,1]=>12
[3,2,1,1,1,1,1,1]=>6
[3,1,1,1,1,1,1,1,1]=>3
[2,2,2,2,2,1]=>32
[2,2,2,2,1,1,1]=>16
[2,2,2,1,1,1,1,1]=>8
[2,2,1,1,1,1,1,1,1]=>4
[2,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1]=>1
[12]=>77
[11,1]=>56
[10,2]=>84
[10,1,1]=>42
[9,3]=>90
[9,2,1]=>60
[9,1,1,1]=>30
[8,4]=>110
[8,3,1]=>66
[8,2,2]=>88
[8,2,1,1]=>44
[8,1,1,1,1]=>22
[7,5]=>105
[7,4,1]=>75
[7,3,2]=>90
[7,3,1,1]=>45
[7,2,2,1]=>60
[7,2,1,1,1]=>30
[7,1,1,1,1,1]=>15
[6,6]=>121
[6,5,1]=>77
[6,4,2]=>110
[6,4,1,1]=>55
[6,3,3]=>99
[6,3,2,1]=>66
[6,3,1,1,1]=>33
[6,2,2,2]=>88
[6,2,2,1,1]=>44
[6,2,1,1,1,1]=>22
[6,1,1,1,1,1,1]=>11
[5,5,2]=>98
[5,5,1,1]=>49
[5,4,3]=>105
[5,4,2,1]=>70
[5,4,1,1,1]=>35
[5,3,3,1]=>63
[5,3,2,2]=>84
[5,3,2,1,1]=>42
[5,3,1,1,1,1]=>21
[5,2,2,2,1]=>56
[5,2,2,1,1,1]=>28
[5,2,1,1,1,1,1]=>14
[5,1,1,1,1,1,1,1]=>7
[4,4,4]=>125
[4,4,3,1]=>75
[4,4,2,2]=>100
[4,4,2,1,1]=>50
[4,4,1,1,1,1]=>25
[4,3,3,2]=>90
[4,3,3,1,1]=>45
[4,3,2,2,1]=>60
[4,3,2,1,1,1]=>30
[4,3,1,1,1,1,1]=>15
[4,2,2,2,2]=>80
[4,2,2,2,1,1]=>40
[4,2,2,1,1,1,1]=>20
[4,2,1,1,1,1,1,1]=>10
[4,1,1,1,1,1,1,1,1]=>5
[3,3,3,3]=>81
[3,3,3,2,1]=>54
[3,3,3,1,1,1]=>27
[3,3,2,2,2]=>72
[3,3,2,2,1,1]=>36
[3,3,2,1,1,1,1]=>18
[3,3,1,1,1,1,1,1]=>9
[3,2,2,2,2,1]=>48
[3,2,2,2,1,1,1]=>24
[3,2,2,1,1,1,1,1]=>12
[3,2,1,1,1,1,1,1,1]=>6
[3,1,1,1,1,1,1,1,1,1]=>3
[2,2,2,2,2,2]=>64
[2,2,2,2,2,1,1]=>32
[2,2,2,2,1,1,1,1]=>16
[2,2,2,1,1,1,1,1,1]=>8
[2,2,1,1,1,1,1,1,1,1]=>4
[2,1,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1,1]=>1
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of multipartitions of sizes given by an integer partition.
This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
This is, for $\lambda = (\lambda_1,\ldots,\lambda_n)$, this is the number of $n$-tuples $(\lambda^{(1)},\ldots,\lambda^{(n)})$ of partitions $\lambda^{(i)}$ such that $\lambda^{(i)} \vdash \lambda_i$.
Code
def statistic(L): return prod(Partitions(i).cardinality() for i in L)
Created
Aug 11, 2017 at 16:56 by Christian Stump
Updated
Aug 11, 2017 at 16:56 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!