edit this statistic or download as text // json
Identifier
Values
=>
Cc0002;cc-rep
[2]=>1 [1,1]=>0 [3]=>1 [2,1]=>0 [1,1,1]=>0 [4]=>2 [3,1]=>5 [2,2]=>2 [2,1,1]=>1 [1,1,1,1]=>0 [5]=>3 [4,1]=>4 [3,2]=>14 [3,1,1]=>6 [2,2,1]=>1 [2,1,1,1]=>0 [1,1,1,1,1]=>0 [6]=>4 [5,1]=>19 [4,2]=>27 [4,1,1]=>16 [3,3]=>14 [3,2,1]=>0 [3,1,1,1]=>14 [2,2,2]=>6 [2,2,1,1]=>9 [2,1,1,1,1]=>1 [1,1,1,1,1,1]=>0 [7]=>4 [6,1]=>18 [5,2]=>42 [5,1,1]=>45 [4,3]=>36 [4,2,1]=>97 [4,1,1,1]=>20 [3,3,1]=>62 [3,2,2]=>22 [3,2,1,1]=>43 [3,1,1,1,1]=>15 [2,2,2,1]=>6 [2,2,1,1,1]=>0 [2,1,1,1,1,1]=>0 [1,1,1,1,1,1,1]=>0 [8]=>6 [7,1]=>40 [6,2]=>94 [6,1,1]=>93 [5,3]=>106 [5,2,1]=>64 [5,1,1,1]=>145 [4,4]=>64 [4,3,1]=>342 [4,2,2]=>154 [4,2,1,1]=>270 [4,1,1,1,1]=>65 [3,3,2]=>126 [3,3,1,1]=>70 [3,2,2,1]=>78 [3,2,1,1,1]=>0 [3,1,1,1,1,1]=>33 [2,2,2,2]=>20 [2,2,2,1,1]=>34 [2,2,1,1,1,1]=>6 [2,1,1,1,1,1,1]=>2 [1,1,1,1,1,1,1,1]=>0 [9]=>7 [8,1]=>32 [7,2]=>187 [7,1,1]=>112 [6,3]=>144 [6,2,1]=>629 [6,1,1,1]=>168 [5,4]=>226 [5,3,1]=>704 [5,2,2]=>282 [5,2,1,1]=>659 [5,1,1,1,1]=>210 [4,4,1]=>266 [4,3,2]=>664 [4,3,1,1]=>592 [4,2,2,1]=>272 [4,2,1,1,1]=>664 [4,1,1,1,1,1]=>56 [3,3,3]=>126 [3,3,2,1]=>8 [3,3,1,1,1]=>198 [3,2,2,2]=>154 [3,2,2,1,1]=>268 [3,2,1,1,1,1]=>106 [3,1,1,1,1,1,1]=>28 [2,2,2,2,1]=>26 [2,2,2,1,1,1]=>0 [2,2,1,1,1,1,1]=>2 [2,1,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1,1]=>0 [10]=>8 [9,1]=>71 [8,2]=>254 [8,1,1]=>172 [7,3]=>571 [7,2,1]=>480 [7,1,1,1]=>392 [6,4]=>508 [6,3,1]=>2116 [6,2,2]=>1496 [6,2,1,1]=>1568 [6,1,1,1,1]=>448 [5,5]=>226 [5,4,1]=>704 [5,3,2]=>2436 [5,3,1,1]=>2630 [5,2,2,1]=>1888 [5,2,1,1,1]=>448 [5,1,1,1,1,1]=>434 [4,4,2]=>1182 [4,4,1,1]=>1074 [4,3,3]=>832 [4,3,2,1]=>0 [4,3,1,1,1]=>2312 [4,2,2,2]=>726 [4,2,2,1,1]=>1906 [4,2,1,1,1,1]=>882 [4,1,1,1,1,1,1]=>112 [3,3,3,1]=>638 [3,3,2,2]=>330 [3,3,2,1,1]=>714 [3,3,1,1,1,1]=>304 [3,2,2,2,1]=>160 [3,2,2,1,1,1]=>404 [3,2,1,1,1,1,1]=>0 [3,1,1,1,1,1,1,1]=>44 [2,2,2,2,2]=>68 [2,2,2,2,1,1]=>122 [2,2,2,1,1,1,1]=>29 [2,2,1,1,1,1,1,1]=>26 [2,1,1,1,1,1,1,1,1]=>1 [1,1,1,1,1,1,1,1,1,1]=>0 [11]=>8 [10,1]=>70 [9,2]=>264 [9,1,1]=>315 [8,3]=>750 [8,2,1]=>1670 [8,1,1,1]=>480 [7,4]=>1319 [7,3,1]=>3332 [7,2,2]=>2136 [7,2,1,1]=>2608 [7,1,1,1,1]=>840 [6,5]=>692 [6,4,1]=>4138 [6,3,2]=>6588 [6,3,1,1]=>3696 [6,2,2,1]=>3552 [6,2,1,1,1]=>4004 [6,1,1,1,1,1]=>756 [5,5,1]=>1794 [5,4,2]=>5312 [5,4,1,1]=>5575 [5,3,3]=>3058 [5,3,2,1]=>10188 [5,3,1,1,1]=>5236 [5,2,2,2]=>3739 [5,2,2,1,1]=>4004 [5,2,1,1,1,1]=>1540 [5,1,1,1,1,1,1]=>630 [4,4,3]=>1804 [4,4,2,1]=>5028 [4,4,1,1,1]=>2861 [4,3,3,1]=>3564 [4,3,2,2]=>1572 [4,3,2,1,1]=>5982 [4,3,1,1,1,1]=>3048 [4,2,2,2,1]=>3665 [4,2,2,1,1,1]=>1232 [4,2,1,1,1,1,1]=>1550 [4,1,1,1,1,1,1,1]=>120 [3,3,3,2]=>1430 [3,3,3,1,1]=>902 [3,3,2,2,1]=>1618 [3,3,2,1,1,1]=>342 [3,3,1,1,1,1,1]=>944 [3,2,2,2,2]=>516 [3,2,2,2,1,1]=>1406 [3,2,2,1,1,1,1]=>518 [3,2,1,1,1,1,1,1]=>178 [3,1,1,1,1,1,1,1,1]=>45 [2,2,2,2,2,1]=>100 [2,2,2,2,1,1,1]=>1 [2,2,2,1,1,1,1,1]=>20 [2,2,1,1,1,1,1,1,1]=>0 [2,1,1,1,1,1,1,1,1,1]=>0 [1,1,1,1,1,1,1,1,1,1,1]=>0 [12]=>10 [11,1]=>108 [10,2]=>476 [10,1,1]=>475 [9,3]=>1234 [9,2,1]=>1280 [9,1,1,1]=>1395 [8,4]=>2619 [8,3,1]=>8095 [8,2,2]=>3652 [8,2,1,1]=>6780 [8,1,1,1,1]=>1740 [7,5]=>2539 [7,4,1]=>4224 [7,3,2]=>15961 [7,3,1,1]=>12738 [7,2,2,1]=>12102 [7,2,1,1,1]=>5184 [7,1,1,1,1,1]=>2352 [6,6]=>824 [6,5,1]=>9693 [6,4,2]=>20691 [6,4,1,1]=>13486 [6,3,3]=>11626 [6,3,2,1]=>5632 [6,3,1,1,1]=>14784 [6,2,2,2]=>10041 [6,2,2,1,1]=>16488 [6,2,1,1,1,1]=>8400 [6,1,1,1,1,1,1]=>1806 [5,5,2]=>6446 [5,5,1,1]=>8524 [5,4,3]=>8128 [5,4,2,1]=>40788 [5,4,1,1,1]=>8832 [5,3,3,1]=>27304 [5,3,2,2]=>24409 [5,3,2,1,1]=>30800 [5,3,1,1,1,1]=>12024 [5,2,2,2,1]=>5248 [5,2,2,1,1,1]=>7392 [5,2,1,1,1,1,1]=>1728 [5,1,1,1,1,1,1,1]=>1230 [4,4,4]=>2728 [4,4,3,1]=>16732 [4,4,2,2]=>7920 [4,4,2,1,1]=>20141 [4,4,1,1,1,1]=>9209 [4,3,3,2]=>9998 [4,3,3,1,1]=>10118 [4,3,2,2,1]=>16962 [4,3,2,1,1,1]=>0 [4,3,1,1,1,1,1]=>8688 [4,2,2,2,2]=>6326 [4,2,2,2,1,1]=>8074 [4,2,2,1,1,1,1]=>3894 [4,2,1,1,1,1,1,1]=>2670 [4,1,1,1,1,1,1,1,1]=>255 [3,3,3,3]=>1430 [3,3,3,2,1]=>320 [3,3,3,1,1,1]=>3224 [3,3,2,2,2]=>2794 [3,3,2,2,1,1]=>6039 [3,3,2,1,1,1,1]=>3289 [3,3,1,1,1,1,1,1]=>660 [3,2,2,2,2,1]=>1857 [3,2,2,2,1,1,1]=>0 [3,2,2,1,1,1,1,1]=>815 [3,2,1,1,1,1,1,1,1]=>0 [3,1,1,1,1,1,1,1,1,1]=>75 [2,2,2,2,2,2]=>232 [2,2,2,2,2,1,1]=>431 [2,2,2,2,1,1,1,1]=>131 [2,2,2,1,1,1,1,1,1]=>152 [2,2,1,1,1,1,1,1,1,1]=>10 [2,1,1,1,1,1,1,1,1,1,1]=>2 [1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/ search for generating function
searching the database for statistics with the same generating function
click to show known generating functions       
Description
The 2-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
Code
def statistic(L):
    return L.prime_degree(2)

Created
Aug 11, 2017 at 17:05 by Christian Stump
Updated
Aug 11, 2017 at 17:05 by Christian Stump