Identifier
- St000934: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>1
[1,1]=>0
[3]=>1
[2,1]=>0
[1,1,1]=>0
[4]=>2
[3,1]=>5
[2,2]=>2
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>3
[4,1]=>4
[3,2]=>14
[3,1,1]=>6
[2,2,1]=>1
[2,1,1,1]=>0
[1,1,1,1,1]=>0
[6]=>4
[5,1]=>19
[4,2]=>27
[4,1,1]=>16
[3,3]=>14
[3,2,1]=>0
[3,1,1,1]=>14
[2,2,2]=>6
[2,2,1,1]=>9
[2,1,1,1,1]=>1
[1,1,1,1,1,1]=>0
[7]=>4
[6,1]=>18
[5,2]=>42
[5,1,1]=>45
[4,3]=>36
[4,2,1]=>97
[4,1,1,1]=>20
[3,3,1]=>62
[3,2,2]=>22
[3,2,1,1]=>43
[3,1,1,1,1]=>15
[2,2,2,1]=>6
[2,2,1,1,1]=>0
[2,1,1,1,1,1]=>0
[1,1,1,1,1,1,1]=>0
[8]=>6
[7,1]=>40
[6,2]=>94
[6,1,1]=>93
[5,3]=>106
[5,2,1]=>64
[5,1,1,1]=>145
[4,4]=>64
[4,3,1]=>342
[4,2,2]=>154
[4,2,1,1]=>270
[4,1,1,1,1]=>65
[3,3,2]=>126
[3,3,1,1]=>70
[3,2,2,1]=>78
[3,2,1,1,1]=>0
[3,1,1,1,1,1]=>33
[2,2,2,2]=>20
[2,2,2,1,1]=>34
[2,2,1,1,1,1]=>6
[2,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1]=>0
[9]=>7
[8,1]=>32
[7,2]=>187
[7,1,1]=>112
[6,3]=>144
[6,2,1]=>629
[6,1,1,1]=>168
[5,4]=>226
[5,3,1]=>704
[5,2,2]=>282
[5,2,1,1]=>659
[5,1,1,1,1]=>210
[4,4,1]=>266
[4,3,2]=>664
[4,3,1,1]=>592
[4,2,2,1]=>272
[4,2,1,1,1]=>664
[4,1,1,1,1,1]=>56
[3,3,3]=>126
[3,3,2,1]=>8
[3,3,1,1,1]=>198
[3,2,2,2]=>154
[3,2,2,1,1]=>268
[3,2,1,1,1,1]=>106
[3,1,1,1,1,1,1]=>28
[2,2,2,2,1]=>26
[2,2,2,1,1,1]=>0
[2,2,1,1,1,1,1]=>2
[2,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1]=>0
[10]=>8
[9,1]=>71
[8,2]=>254
[8,1,1]=>172
[7,3]=>571
[7,2,1]=>480
[7,1,1,1]=>392
[6,4]=>508
[6,3,1]=>2116
[6,2,2]=>1496
[6,2,1,1]=>1568
[6,1,1,1,1]=>448
[5,5]=>226
[5,4,1]=>704
[5,3,2]=>2436
[5,3,1,1]=>2630
[5,2,2,1]=>1888
[5,2,1,1,1]=>448
[5,1,1,1,1,1]=>434
[4,4,2]=>1182
[4,4,1,1]=>1074
[4,3,3]=>832
[4,3,2,1]=>0
[4,3,1,1,1]=>2312
[4,2,2,2]=>726
[4,2,2,1,1]=>1906
[4,2,1,1,1,1]=>882
[4,1,1,1,1,1,1]=>112
[3,3,3,1]=>638
[3,3,2,2]=>330
[3,3,2,1,1]=>714
[3,3,1,1,1,1]=>304
[3,2,2,2,1]=>160
[3,2,2,1,1,1]=>404
[3,2,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1]=>44
[2,2,2,2,2]=>68
[2,2,2,2,1,1]=>122
[2,2,2,1,1,1,1]=>29
[2,2,1,1,1,1,1,1]=>26
[2,1,1,1,1,1,1,1,1]=>1
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>8
[10,1]=>70
[9,2]=>264
[9,1,1]=>315
[8,3]=>750
[8,2,1]=>1670
[8,1,1,1]=>480
[7,4]=>1319
[7,3,1]=>3332
[7,2,2]=>2136
[7,2,1,1]=>2608
[7,1,1,1,1]=>840
[6,5]=>692
[6,4,1]=>4138
[6,3,2]=>6588
[6,3,1,1]=>3696
[6,2,2,1]=>3552
[6,2,1,1,1]=>4004
[6,1,1,1,1,1]=>756
[5,5,1]=>1794
[5,4,2]=>5312
[5,4,1,1]=>5575
[5,3,3]=>3058
[5,3,2,1]=>10188
[5,3,1,1,1]=>5236
[5,2,2,2]=>3739
[5,2,2,1,1]=>4004
[5,2,1,1,1,1]=>1540
[5,1,1,1,1,1,1]=>630
[4,4,3]=>1804
[4,4,2,1]=>5028
[4,4,1,1,1]=>2861
[4,3,3,1]=>3564
[4,3,2,2]=>1572
[4,3,2,1,1]=>5982
[4,3,1,1,1,1]=>3048
[4,2,2,2,1]=>3665
[4,2,2,1,1,1]=>1232
[4,2,1,1,1,1,1]=>1550
[4,1,1,1,1,1,1,1]=>120
[3,3,3,2]=>1430
[3,3,3,1,1]=>902
[3,3,2,2,1]=>1618
[3,3,2,1,1,1]=>342
[3,3,1,1,1,1,1]=>944
[3,2,2,2,2]=>516
[3,2,2,2,1,1]=>1406
[3,2,2,1,1,1,1]=>518
[3,2,1,1,1,1,1,1]=>178
[3,1,1,1,1,1,1,1,1]=>45
[2,2,2,2,2,1]=>100
[2,2,2,2,1,1,1]=>1
[2,2,2,1,1,1,1,1]=>20
[2,2,1,1,1,1,1,1,1]=>0
[2,1,1,1,1,1,1,1,1,1]=>0
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>10
[11,1]=>108
[10,2]=>476
[10,1,1]=>475
[9,3]=>1234
[9,2,1]=>1280
[9,1,1,1]=>1395
[8,4]=>2619
[8,3,1]=>8095
[8,2,2]=>3652
[8,2,1,1]=>6780
[8,1,1,1,1]=>1740
[7,5]=>2539
[7,4,1]=>4224
[7,3,2]=>15961
[7,3,1,1]=>12738
[7,2,2,1]=>12102
[7,2,1,1,1]=>5184
[7,1,1,1,1,1]=>2352
[6,6]=>824
[6,5,1]=>9693
[6,4,2]=>20691
[6,4,1,1]=>13486
[6,3,3]=>11626
[6,3,2,1]=>5632
[6,3,1,1,1]=>14784
[6,2,2,2]=>10041
[6,2,2,1,1]=>16488
[6,2,1,1,1,1]=>8400
[6,1,1,1,1,1,1]=>1806
[5,5,2]=>6446
[5,5,1,1]=>8524
[5,4,3]=>8128
[5,4,2,1]=>40788
[5,4,1,1,1]=>8832
[5,3,3,1]=>27304
[5,3,2,2]=>24409
[5,3,2,1,1]=>30800
[5,3,1,1,1,1]=>12024
[5,2,2,2,1]=>5248
[5,2,2,1,1,1]=>7392
[5,2,1,1,1,1,1]=>1728
[5,1,1,1,1,1,1,1]=>1230
[4,4,4]=>2728
[4,4,3,1]=>16732
[4,4,2,2]=>7920
[4,4,2,1,1]=>20141
[4,4,1,1,1,1]=>9209
[4,3,3,2]=>9998
[4,3,3,1,1]=>10118
[4,3,2,2,1]=>16962
[4,3,2,1,1,1]=>0
[4,3,1,1,1,1,1]=>8688
[4,2,2,2,2]=>6326
[4,2,2,2,1,1]=>8074
[4,2,2,1,1,1,1]=>3894
[4,2,1,1,1,1,1,1]=>2670
[4,1,1,1,1,1,1,1,1]=>255
[3,3,3,3]=>1430
[3,3,3,2,1]=>320
[3,3,3,1,1,1]=>3224
[3,3,2,2,2]=>2794
[3,3,2,2,1,1]=>6039
[3,3,2,1,1,1,1]=>3289
[3,3,1,1,1,1,1,1]=>660
[3,2,2,2,2,1]=>1857
[3,2,2,2,1,1,1]=>0
[3,2,2,1,1,1,1,1]=>815
[3,2,1,1,1,1,1,1,1]=>0
[3,1,1,1,1,1,1,1,1,1]=>75
[2,2,2,2,2,2]=>232
[2,2,2,2,2,1,1]=>431
[2,2,2,2,1,1,1,1]=>131
[2,2,2,1,1,1,1,1,1]=>152
[2,2,1,1,1,1,1,1,1,1]=>10
[2,1,1,1,1,1,1,1,1,1,1]=>2
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The 2-degree of an integer partition.
For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
For an integer partition $\lambda$, this is given by the exponent of 2 in the Gram determinant of the integal Specht module of the symmetric group indexed by $\lambda$.
Code
def statistic(L): return L.prime_degree(2)
Created
Aug 11, 2017 at 17:05 by Christian Stump
Updated
Aug 11, 2017 at 17:05 by Christian Stump
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!