Identifier
- St000936: Integer partitions ⟶ ℤ
Values
=>
Cc0002;cc-rep
[2]=>0
[1,1]=>0
[3]=>0
[2,1]=>2
[1,1,1]=>0
[4]=>0
[3,1]=>1
[2,2]=>4
[2,1,1]=>1
[1,1,1,1]=>0
[5]=>0
[4,1]=>4
[3,2]=>1
[3,1,1]=>6
[2,2,1]=>1
[2,1,1,1]=>4
[1,1,1,1,1]=>0
[6]=>0
[5,1]=>3
[4,2]=>4
[4,1,1]=>7
[3,3]=>3
[3,2,1]=>10
[3,1,1,1]=>7
[2,2,2]=>3
[2,2,1,1]=>4
[2,1,1,1,1]=>3
[1,1,1,1,1,1]=>0
[7]=>0
[6,1]=>8
[5,2]=>11
[5,1,1]=>4
[4,3]=>9
[4,2,1]=>3
[4,1,1,1]=>14
[3,3,1]=>3
[3,2,2]=>3
[3,2,1,1]=>3
[3,1,1,1,1]=>4
[2,2,2,1]=>9
[2,2,1,1,1]=>11
[2,1,1,1,1,1]=>8
[1,1,1,1,1,1,1]=>0
[8]=>0
[7,1]=>7
[6,2]=>13
[6,1,1]=>9
[5,3]=>13
[5,2,1]=>18
[5,1,1,1]=>8
[4,4]=>15
[4,3,1]=>14
[4,2,2]=>15
[4,2,1,1]=>21
[4,1,1,1,1]=>8
[3,3,2]=>21
[3,3,1,1]=>15
[3,2,2,1]=>14
[3,2,1,1,1]=>18
[3,1,1,1,1,1]=>9
[2,2,2,2]=>15
[2,2,2,1,1]=>13
[2,2,1,1,1,1]=>13
[2,1,1,1,1,1,1]=>7
[1,1,1,1,1,1,1,1]=>0
[9]=>0
[8,1]=>15
[7,2]=>11
[7,1,1]=>19
[6,3]=>25
[6,2,1]=>8
[6,1,1,1]=>18
[5,4]=>20
[5,3,1]=>24
[5,2,2]=>22
[5,2,1,1]=>9
[5,1,1,1,1]=>29
[4,4,1]=>19
[4,3,2]=>18
[4,3,1,1]=>17
[4,2,2,1]=>17
[4,2,1,1,1]=>9
[4,1,1,1,1,1]=>18
[3,3,3]=>29
[3,3,2,1]=>18
[3,3,1,1,1]=>22
[3,2,2,2]=>19
[3,2,2,1,1]=>24
[3,2,1,1,1,1]=>8
[3,1,1,1,1,1,1]=>19
[2,2,2,2,1]=>20
[2,2,2,1,1,1]=>25
[2,2,1,1,1,1,1]=>11
[2,1,1,1,1,1,1,1]=>15
[1,1,1,1,1,1,1,1,1]=>0
[10]=>0
[9,1]=>15
[8,2]=>19
[8,1,1]=>23
[7,3]=>19
[7,2,1]=>32
[7,1,1,1]=>22
[6,4]=>25
[6,3,1]=>8
[6,2,2]=>19
[6,2,1,1]=>25
[6,1,1,1,1]=>28
[5,5]=>28
[5,4,1]=>33
[5,3,2]=>27
[5,3,1,1]=>24
[5,2,2,1]=>18
[5,2,1,1,1]=>41
[5,1,1,1,1,1]=>28
[4,4,2]=>26
[4,4,1,1]=>23
[4,3,3]=>28
[4,3,2,1]=>41
[4,3,1,1,1]=>18
[4,2,2,2]=>23
[4,2,2,1,1]=>24
[4,2,1,1,1,1]=>25
[4,1,1,1,1,1,1]=>22
[3,3,3,1]=>28
[3,3,2,2]=>26
[3,3,2,1,1]=>27
[3,3,1,1,1,1]=>19
[3,2,2,2,1]=>33
[3,2,2,1,1,1]=>8
[3,2,1,1,1,1,1]=>32
[3,1,1,1,1,1,1,1]=>23
[2,2,2,2,2]=>28
[2,2,2,2,1,1]=>25
[2,2,2,1,1,1,1]=>19
[2,2,1,1,1,1,1,1]=>19
[2,1,1,1,1,1,1,1,1]=>15
[1,1,1,1,1,1,1,1,1,1]=>0
[11]=>0
[10,1]=>27
[9,2]=>33
[9,1,1]=>23
[8,3]=>35
[8,2,1]=>18
[8,1,1,1]=>42
[7,4]=>8
[7,3,1]=>38
[7,2,2]=>22
[7,2,1,1]=>43
[7,1,1,1,1]=>35
[6,5]=>43
[6,4,1]=>22
[6,3,2]=>34
[6,3,1,1]=>46
[6,2,2,1]=>49
[6,2,1,1,1]=>32
[6,1,1,1,1,1]=>55
[5,5,1]=>35
[5,4,2]=>44
[5,4,1,1]=>16
[5,3,3]=>35
[5,3,2,1]=>34
[5,3,1,1,1]=>34
[5,2,2,2]=>27
[5,2,2,1,1]=>34
[5,2,1,1,1,1]=>32
[5,1,1,1,1,1,1]=>35
[4,4,3]=>38
[4,4,2,1]=>44
[4,4,1,1,1]=>27
[4,3,3,1]=>55
[4,3,2,2]=>44
[4,3,2,1,1]=>34
[4,3,1,1,1,1]=>49
[4,2,2,2,1]=>16
[4,2,2,1,1,1]=>46
[4,2,1,1,1,1,1]=>43
[4,1,1,1,1,1,1,1]=>42
[3,3,3,2]=>38
[3,3,3,1,1]=>35
[3,3,2,2,1]=>44
[3,3,2,1,1,1]=>34
[3,3,1,1,1,1,1]=>22
[3,2,2,2,2]=>35
[3,2,2,2,1,1]=>22
[3,2,2,1,1,1,1]=>38
[3,2,1,1,1,1,1,1]=>18
[3,1,1,1,1,1,1,1,1]=>23
[2,2,2,2,2,1]=>43
[2,2,2,2,1,1,1]=>8
[2,2,2,1,1,1,1,1]=>35
[2,2,1,1,1,1,1,1,1]=>33
[2,1,1,1,1,1,1,1,1,1]=>27
[1,1,1,1,1,1,1,1,1,1,1]=>0
[12]=>0
[11,1]=>29
[10,2]=>42
[10,1,1]=>35
[9,3]=>42
[9,2,1]=>55
[9,1,1,1]=>36
[8,4]=>32
[8,3,1]=>37
[8,2,2]=>44
[8,2,1,1]=>22
[8,1,1,1,1]=>44
[7,5]=>24
[7,4,1]=>71
[7,3,2]=>40
[7,3,1,1]=>46
[7,2,2,1]=>39
[7,2,1,1,1]=>59
[7,1,1,1,1,1]=>49
[6,6]=>60
[6,5,1]=>23
[6,4,2]=>50
[6,4,1,1]=>50
[6,3,3]=>45
[6,3,2,1]=>73
[6,3,1,1,1]=>67
[6,2,2,2]=>44
[6,2,2,1,1]=>62
[6,2,1,1,1,1]=>76
[6,1,1,1,1,1,1]=>49
[5,5,2]=>48
[5,5,1,1]=>40
[5,4,3]=>59
[5,4,2,1]=>41
[5,4,1,1,1]=>57
[5,3,3,1]=>49
[5,3,2,2]=>44
[5,3,2,1,1]=>76
[5,3,1,1,1,1]=>62
[5,2,2,2,1]=>57
[5,2,2,1,1,1]=>67
[5,2,1,1,1,1,1]=>59
[5,1,1,1,1,1,1,1]=>44
[4,4,4]=>55
[4,4,3,1]=>47
[4,4,2,2]=>76
[4,4,2,1,1]=>44
[4,4,1,1,1,1]=>44
[4,3,3,2]=>47
[4,3,3,1,1]=>49
[4,3,2,2,1]=>41
[4,3,2,1,1,1]=>73
[4,3,1,1,1,1,1]=>39
[4,2,2,2,2]=>40
[4,2,2,2,1,1]=>50
[4,2,2,1,1,1,1]=>46
[4,2,1,1,1,1,1,1]=>22
[4,1,1,1,1,1,1,1,1]=>36
[3,3,3,3]=>55
[3,3,3,2,1]=>59
[3,3,3,1,1,1]=>45
[3,3,2,2,2]=>48
[3,3,2,2,1,1]=>50
[3,3,2,1,1,1,1]=>40
[3,3,1,1,1,1,1,1]=>44
[3,2,2,2,2,1]=>23
[3,2,2,2,1,1,1]=>71
[3,2,2,1,1,1,1,1]=>37
[3,2,1,1,1,1,1,1,1]=>55
[3,1,1,1,1,1,1,1,1,1]=>35
[2,2,2,2,2,2]=>60
[2,2,2,2,2,1,1]=>24
[2,2,2,2,1,1,1,1]=>32
[2,2,2,1,1,1,1,1,1]=>42
[2,2,1,1,1,1,1,1,1,1]=>42
[2,1,1,1,1,1,1,1,1,1,1]=>29
[1,1,1,1,1,1,1,1,1,1,1,1]=>0
search for individual values
searching the database for the individual values of this statistic
/
search for generating function
searching the database for statistics with the same generating function
Description
The number of even values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugace class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $4$.
It is shown in [1] that the sum of the values of the statistic over all partitions of a given size is even.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugace class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $4$.
It is shown in [1] that the sum of the values of the statistic over all partitions of a given size is even.
References
[1] Miller, A. R. Note on parity and the irreducible characters of the symmetric group arXiv:1708.03267
Code
def table(n): s = SymmetricFunctions(ZZ).s() p = SymmetricFunctions(ZZ).p() res = dict() P = Partitions(n) r = P.cardinality() for mu in P: res[mu] = [0]*r for i, la in enumerate(P): for mu, v in s(p(la)): res[mu][i] = v return res def statistic(la): t = table(la.size()) return len([1 for e in t[la] if is_even(e)])
Created
Aug 11, 2017 at 22:54 by Martin Rubey
Updated
Aug 11, 2017 at 22:54 by Martin Rubey
searching the database
Sorry, this statistic was not found in the database
or
add this statistic to the database – it's very simple and we need your support!