Identifier
Values
([(0,3),(1,3),(2,3)],4) => [1,1,1] => [1,1] => [2] => 2
([(0,3),(1,2),(2,3)],4) => [1,1,1] => [1,1] => [2] => 2
([(1,4),(2,4),(3,4)],5) => [1,1,1] => [1,1] => [2] => 2
([(0,4),(1,4),(2,4),(3,4)],5) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,4),(2,3),(3,4)],5) => [1,1,1] => [1,1] => [2] => 2
([(0,1),(2,4),(3,4)],5) => [1,1,1] => [1,1] => [2] => 2
([(0,4),(1,4),(2,3),(3,4)],5) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,4),(1,4),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [2] => 2
([(0,4),(1,3),(2,3),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [2] => 2
([(0,4),(1,3),(2,3),(2,4)],5) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,3),(1,2),(1,4),(2,4),(3,4)],5) => [3,1,1] => [1,1] => [2] => 2
([(0,3),(0,4),(1,2),(1,4),(2,4),(3,4)],5) => [3,3] => [3] => [1,1,1] => 2
([(2,5),(3,5),(4,5)],6) => [1,1,1] => [1,1] => [2] => 2
([(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,5),(2,5),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(2,5),(3,4),(4,5)],6) => [1,1,1] => [1,1] => [2] => 2
([(1,2),(3,5),(4,5)],6) => [1,1,1] => [1,1] => [2] => 2
([(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,1),(2,5),(3,5),(4,5)],6) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,5),(2,5),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,1] => [2] => 2
([(0,5),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,5),(2,4),(3,4)],6) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,5),(2,3),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,1] => [2] => 2
([(0,5),(1,5),(2,4),(3,4),(4,5)],6) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,5),(1,5),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 2
([(0,5),(1,5),(2,4),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5)],6) => [4,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3)],6) => [1,1,1] => [1,1] => [2] => 2
([(1,5),(2,4),(3,4),(3,5)],6) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,1),(2,5),(3,4),(4,5)],6) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,4),(2,3),(3,5),(4,5)],6) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1] => [1,1] => [2] => 2
([(0,1),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1] => [1,1] => [2] => 2
([(0,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3] => [3] => [1,1,1] => 2
([(0,5),(1,4),(1,5),(2,3),(2,5),(3,5),(4,5)],6) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3),(2,4),(3,5)],6) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,5),(1,5),(2,3),(2,4),(3,4)],6) => [3,1,1] => [1,1] => [2] => 2
([(0,4),(1,2),(1,3),(2,5),(3,5),(4,5)],6) => [4,1,1] => [1,1] => [2] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,4),(1,2),(2,5),(3,4),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,4),(1,4),(2,3),(2,5),(3,5),(4,5)],6) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,5),(4,5)],6) => [4,3] => [3] => [1,1,1] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,5),(4,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,4),(1,2),(1,5),(2,5),(3,4),(3,5),(4,5)],6) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,5),(1,5),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [5,3] => [3] => [1,1,1] => 2
([(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3),(2,4),(2,5),(3,4),(3,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(4,5)],6) => [3,3] => [3] => [1,1,1] => 2
([(0,2),(1,4),(1,5),(2,3),(3,4),(3,5),(4,5)],6) => [5,1,1] => [1,1] => [2] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(4,5)],6) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(3,4),(3,5),(4,5)],6) => [5,3] => [3] => [1,1,1] => 2
([(0,1),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,1,1] => [1,1] => [2] => 2
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)],6) => [6,3] => [3] => [1,1,1] => 2
([(3,6),(4,6),(5,6)],7) => [1,1,1] => [1,1] => [2] => 2
([(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(3,6),(4,5),(5,6)],7) => [1,1,1] => [1,1] => [2] => 2
([(2,3),(4,6),(5,6)],7) => [1,1,1] => [1,1] => [2] => 2
([(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,2),(3,6),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,1),(2,6),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,6),(3,5),(4,5)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,1] => [2] => 2
([(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,6),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,6),(3,4),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,6),(3,5),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(1,6),(2,5),(3,4)],7) => [1,1,1] => [1,1] => [2] => 2
>>> Load all 346 entries. <<<
([(2,6),(3,5),(4,5),(4,6)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,2),(3,6),(4,5),(5,6)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(0,3),(1,2),(4,6),(5,6)],7) => [1,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,1),(2,6),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1] => [1,1] => [2] => 2
([(1,2),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(1,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,1),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3] => [3] => [1,1,1] => 2
([(0,6),(1,6),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(1,6),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [4,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,5),(3,4),(3,6),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,3),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(1,6),(2,5),(3,4),(3,5),(4,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,5),(2,4),(3,4),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1] => [1,1] => [2] => 2
([(1,5),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,3),(3,6),(4,5),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1] => [1,1] => [2] => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,5),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(0,1),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,6),(2,3),(2,4),(3,6),(4,6),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3] => [3] => [1,1,1] => 2
([(0,5),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,1),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,3,1] => [3,1] => [2,1,1] => 2
([(0,4),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [3] => [1,1,1] => 2
([(0,6),(1,5),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,6),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,4),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,5),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [4,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,4),(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,5),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,3),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(1,6),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,4),(1,6),(2,5),(3,5),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,2),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,4),(2,3),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,3),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,6),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5)],7) => [4,1,1] => [1,1] => [2] => 2
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,6),(1,6),(2,3),(2,4),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(0,4),(1,4),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,4),(0,5),(1,2),(1,3),(2,6),(3,6),(4,6),(5,6)],7) => [4,4] => [4] => [1,1,1,1] => 3
([(0,4),(1,4),(1,6),(2,5),(2,6),(3,5),(3,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,2),(1,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [4,3,1] => [3,1] => [2,1,1] => 2
([(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,4),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,1),(0,2),(1,6),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,4] => [4] => [1,1,1,1] => 3
([(0,5),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(0,6),(1,5),(1,6),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,5] => [5] => [1,1,1,1,1] => 4
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,3),(1,5),(1,6),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,5),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,5),(1,3),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(2,5),(3,4),(4,6),(5,6)],7) => [1,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,3),(1,2),(4,5),(4,6),(5,6)],7) => [3,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(0,1),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,1),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,5),(0,6),(1,4),(1,6),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [3,3,3] => [3,3] => [2,2,2] => 5
([(0,6),(1,5),(2,3),(2,4),(3,5),(4,6)],7) => [1,1,1,1,1,1] => [1,1,1,1,1] => [5] => 7
([(0,6),(1,5),(2,3),(2,4),(3,4),(5,6)],7) => [3,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,4),(2,3),(2,6),(3,5),(4,5),(5,6)],7) => [4,1,1,1] => [1,1,1] => [3] => 3
([(0,4),(1,3),(2,5),(2,6),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,5),(1,2),(1,4),(2,3),(3,6),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,6),(1,4),(2,3),(2,5),(3,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,5),(1,4),(1,5),(2,3),(2,6),(3,6),(4,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,5),(1,4),(2,3),(3,6),(4,5),(4,6),(5,6)],7) => [3,1,1,1,1] => [1,1,1,1] => [4] => 5
([(0,4),(1,2),(1,6),(2,5),(3,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(5,6)],7) => [4,3,1] => [3,1] => [2,1,1] => 2
([(0,4),(1,2),(1,6),(2,6),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,1),(0,5),(1,4),(2,3),(2,6),(3,6),(4,6),(5,6)],7) => [5,3] => [3] => [1,1,1] => 2
([(0,4),(1,3),(2,5),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,5),(1,4),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,5),(4,5),(4,6),(5,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,3),(1,5),(1,6),(2,4),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(1,5),(1,6),(2,3),(2,4),(3,4),(5,6)],7) => [3,3] => [3] => [1,1,1] => 2
([(1,3),(2,5),(2,6),(3,4),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(0,1),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,1,1] => [1,1] => [2] => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,2),(1,3),(2,3),(4,5),(4,6),(5,6)],7) => [3,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,2),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,3] => [3] => [1,1,1] => 2
([(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,1),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,6),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,6),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3,1] => [3,1] => [2,1,1] => 2
([(0,4),(1,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,5),(1,3),(2,4),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,3),(1,5),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,5),(1,6),(2,3),(2,4),(2,5),(3,4),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,4),(1,6),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,4),(2,6),(3,4),(3,5),(4,5),(5,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(1,2),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(0,6),(1,2),(1,5),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,5),(4,5),(4,6),(5,6)],7) => [3,3,3] => [3,3] => [2,2,2] => 5
([(0,1),(0,6),(1,6),(2,3),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,2),(1,5),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,6),(1,6),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,3] => [3] => [1,1,1] => 2
([(0,3),(1,4),(1,5),(2,4),(2,6),(3,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,2),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,3),(1,2),(1,5),(2,4),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,5),(1,4),(2,3),(2,4),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(2,5),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,3),(1,4),(1,5),(2,4),(2,5),(3,6),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,3),(0,4),(1,2),(1,5),(2,5),(3,6),(4,6),(5,6)],7) => [4,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,2),(1,4),(1,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,3),(2,5),(3,4),(4,5),(4,6),(5,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,6),(5,6)],7) => [8,3] => [3] => [1,1,1] => 2
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7,1,1] => [1,1] => [2] => 2
([(0,1),(1,4),(2,3),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,6),(1,3),(2,4),(2,5),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(0,5),(1,5),(2,3),(2,6),(3,4),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,2),(1,5),(1,6),(2,4),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [7,3] => [3] => [1,1,1] => 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,3] => [3] => [1,1,1] => 2
([(0,1),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [8,3] => [3] => [1,1,1] => 2
([(0,1),(0,6),(1,6),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,3] => [3] => [1,1,1] => 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8,1,1] => [1,1] => [2] => 2
([(0,5),(0,6),(1,2),(1,3),(2,3),(4,5),(4,6)],7) => [4,3] => [3] => [1,1,1] => 2
([(0,3),(1,3),(1,4),(2,5),(2,6),(4,5),(4,6),(5,6)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1] => [1,1] => [2] => 2
([(0,6),(1,2),(1,4),(2,4),(3,5),(3,6),(4,5),(5,6)],7) => [3,3,1,1] => [3,1,1] => [3,1,1] => 2
([(0,1),(0,2),(1,2),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,3] => [3] => [1,1,1] => 2
([(0,6),(1,6),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5)],7) => [5,1,1,1] => [1,1,1] => [3] => 3
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [5,4] => [4] => [1,1,1,1] => 3
([(0,2),(1,2),(1,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(0,1),(0,4),(1,4),(2,5),(2,6),(3,5),(3,6),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(1,3),(1,4),(2,5),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,1,1,1] => [1,1,1] => [3] => 3
([(0,1),(0,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,4] => [4] => [1,1,1,1] => 3
([(0,3),(0,6),(1,3),(1,6),(2,4),(2,5),(3,6),(4,5),(4,6),(5,6)],7) => [5,5] => [5] => [1,1,1,1,1] => 4
([(0,5),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,3,1] => [3,1] => [2,1,1] => 2
([(0,5),(0,6),(1,5),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,5] => [5] => [1,1,1,1,1] => 4
([(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1,1] => [1,1] => [2] => 2
([(0,6),(1,5),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,4),(0,5),(1,2),(1,6),(2,6),(3,4),(3,5),(3,6),(4,5)],7) => [5,3,1] => [3,1] => [2,1,1] => 2
([(0,1),(0,2),(1,2),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [6,3] => [3] => [1,1,1] => 2
([(0,4),(0,5),(1,2),(1,3),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [5,5] => [5] => [1,1,1,1,1] => 4
([(0,1),(0,5),(1,5),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6),(5,6)],7) => [6,3,1] => [3,1] => [2,1,1] => 2
([(0,4),(0,5),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [6,5] => [5] => [1,1,1,1,1] => 4
([(0,4),(0,5),(0,6),(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),(4,5),(4,6),(5,6)],7) => [6,6] => [6] => [1,1,1,1,1,1] => 6
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),(4,6),(5,6)],7) => [8,3] => [3] => [1,1,1] => 2
([(0,1),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [9,3] => [3] => [1,1,1] => 2
([(0,1),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,1,1] => [1,1] => [2] => 2
([(0,1),(0,6),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)],7) => [10,3] => [3] => [1,1,1] => 2
search for individual values
searching the database for the individual values of this statistic
Description
The number of positive values of the symmetric group character corresponding to the partition.
For example, the character values of the irreducible representation $S^{(2,2)}$ are $2$ on the conjugacy classes $(4)$ and $(2,2)$, $0$ on the conjugacy classes $(3,1)$ and $(1,1,1,1)$, and $-1$ on the conjugacy class $(2,1,1)$. Therefore, the statistic on the partition $(2,2)$ is $2$.
Map
conjugate
Description
Return the conjugate partition of the partition.
The conjugate partition of the partition $\lambda$ of $n$ is the partition $\lambda^*$ whose Ferrers diagram is obtained from the diagram of $\lambda$ by interchanging rows with columns.
This is also called the associated partition or the transpose in the literature.
Map
first row removal
Description
Removes the first entry of an integer partition
Map
to edge-partition of biconnected components
Description
Sends a graph to the partition recording the number of edges in its biconnected components.
The biconnected components are also known as blocks of a graph.